Mechanism and Pathophysiology
View More View Less
  • 1 Department of Physiology and Pharmacology, Liberty University College of Osteopathic Medicine, Lynchburg, Virginia
  • | 2 Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York
  • | 3 Department of Physiology and Neuroscience, Keck School of Medicine of USC, Los Angeles, California
  • 1.

    Pazoki R , Dehghan A , Evangelou E , Warren H , Gao H , Caulfield M , et al..: Genetic predisposition to high blood pressure and lifestyle factors: associations with midlife blood pressure levels and cardiovascular events. Circulation 137: 653661, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Artamonov MV , Sonkusare SK , Good ME , Momotani K , Eto M , Isakson BE , et al.. RSK2 contributes to myogenic vasoconstriction of resistance arteries by activating smooth muscle myosin and the Na(+)/H(+) exchanger [published online ahead of print Oct 30, 2018]. Sci Signal $ $ doi:10.1126/scisignal.aar3924.PubMed

    • Search Google Scholar
    • Export Citation
  • 3.

    Straub AC , Zeigler AC , Isakson BE : The myoendothelial junction: connections that deliver the message. Physiology (Bethesda) 29: 242249, 2014 PubMed

    • Search Google Scholar
    • Export Citation
  • 4.

    Good ME , Musante L , La Salvia S , Howell NL , Carey RM , Le TH , et al..: Circulating extracellular vesicles in normotension restrain vasodilation in resistance arteries. Hypertension 75: 218228, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Sandow SL , Senadheera S , Bertrand PP , Murphy TV , Tare M : Myoendothelial contacts, gap junctions, and microdomains: anatomical links to function? Microcirculation 19: 403415, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Maarouf N , Sancho M , Fürstenhaupt T , Tran CH , Welsh DG : Structural analysis of endothelial projections from mesenteric arteries. Microcirculation 24: 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Lechauve C , Butcher JT , Freiwan A , Biwer LA , Keith JM , Good ME , et al..: Endothelial cell α-globin and its molecular chaperone α-hemoglobin-stabilizing protein regulate arteriolar contractility. J Clin Invest 128: 50735082, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Johnson AK , Xue B : Central nervous system neuroplasticity and the sensitization of hypertension. Nat Rev Nephrol 14: 750766, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Guyenet PG , Stornetta RL , Holloway BB , Souza GMPR , Abbott SBG : Rostral ventrolateral medulla and hypertension. Hypertension 72: 559566, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Guyenet PG : The sympathetic control of blood pressure. Nat Rev Neurosci 7: 335346, 2006 PubMed

  • 11.

    Grassi G , Mark A , Esler M : The sympathetic nervous system alterations in human hypertension. Circ Res 116: 976990, 2015 PubMed

  • 12.

    Dampney RAL : Resetting of the baroreflex control of sympathetic vasomotor activity during natural behaviors: description and conceptual model of central mechanisms. Front Neurosci 11: 461, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Xue B , Zhang Z , Johnson RF , Johnson AK : Sensitization of slow pressor angiotensin II (Ang II)-initiated hypertension: induction of sensitization by prior Ang II treatment. Hypertension 59: 459466, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Edmondson D , von Känel R : Post-traumatic stress disorder and cardiovascular disease. Lancet Psychiatry 4: 320329, 2017 PubMed

  • 15.

    Mansukhani MP , Covassin N , Somers VK : Apneic sleep, insufficient sleep, and hypertension. Hypertension 73: 744756, 2019 PubMed

  • 16.

    Somers VK , Dyken ME , Clary MP , Abboud FM : Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 96: 18971904, 1995 PubMed

  • 17.

    Fava C , Dorigoni S , Dalle Vedove F , Danese E , Montagnana M , Guidi GC , et al..: Effect of CPAP on blood pressure in patients with OSA/hypopnea a systematic review and meta-analysis. Chest 145: 762771, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Prabhakar NR : Carotid body chemoreflex: a driver of autonomic abnormalities in sleep apnoea. Exp Physiol 101: 975985, 2016 PubMed

  • 19.

    Takahashi K , Ueda S , Kobayashi T , Nishiyama A , Fujisawa Y , Sugaya T , et al..: Chronic intermittent hypoxia-mediated renal sympathetic nerve activation in hypertension and cardiovascular disease. Sci Rep 8: 17926, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Warchol-Celinska E , Prejbisz A , Kadziela J , Florczak E , Januszewicz M , Michalowska I , et al..: Renal denervation in resistant hypertension and obstructive sleep apnea: randomized proof-of-concept phase ii trial. Hypertension 72: 381390, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Aziz M , Amar L , Lorthioir A : Resistant hypertension and obstructive sleep apnea: is there a specific indication for endovascular renal denervation? Hypertension 72: 281282, 2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Calvillo L , Gironacci MM , Crotti L , Meroni PL , Parati G : Neuroimmune crosstalk in the pathophysiology of hypertension. Nat Rev Cardiol 16: 476490, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Norlander AE , Madhur MS , Harrison DG : The immunology of hypertension. J Exp Med 215: 2133, 2018 PubMed

  • 24.

    Wilck N , Balogh A , Markó L , Bartolomaeus H , Müller DN : The role of sodium in modulating immune cell function. Nat Rev Nephrol 15: 546558, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Mattson DL : Immune mechanisms of salt-sensitive hypertension and renal end-organ damage. Nat Rev Nephrol 15: 290300, 2019 PubMed

  • 26.

    Guzik TJ , Hoch NE , Brown KA , McCann LA , Rahman A , Dikalov S , et al..: Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204: 24492460, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Trott DW , Thabet SR , Kirabo A , Saleh MA , Itani H , Norlander AE , et al..: Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension 64: 11081115, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Kirabo A , Fontana V , de Faria AP , Loperena R , Galindo CL , Wu J , et al..: DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest 124: 46424656, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Van Beusecum JP , Barbaro NR , McDowell Z , Aden LA , Xiao L , Pandey AK , et al..: High salt activates CD11c+ antigen-presenting cells via SGK (serum glucocorticoid kinase) 1 to promote renal inflammation and salt-sensitive hypertension. Hypertension 74: 555563, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Ferguson JF , Aden LA , Barbaro NR , Van Beusecum JP , Xiao L , Simmons AJ , et al..: High dietary salt-induced dendritic cell activation underlies microbial dysbiosis-associated hypertension. JCI Insight 5: e126241, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Touyz RM : The neuroimmune axis in the kidney: role in hypertension. Circ Res 117: 487489, 2015 PubMed

  • 32.

    Xiao L , Kirabo A , Wu J , Saleh MA , Zhu L , Wang F , et al..: Renal denervation prevents immune cell activation and renal inflammation in angiotensin II-induced hypertension. Circ Res 117: 547557, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Krum H , Schlaich MP , Sobotka PA , Böhm M , Mahfoud F , Rocha-Singh K , et al..: Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet 383: 622629, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Esler MD , Böhm M , Sievert H , Rump CL , Schmieder RE , Krum H , et al..: Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur Heart J 35: 17521759, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Bhatt DL , Kandzari DE , O’Neill WW , D’Agostino R , Flack JM , Katzen BT , et al..; SYMPLICITY HTN-3 Investigators: A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370: 13931401, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Townsend RR , Mahfoud F , Kandzari DE , Kario K , Pocock S , Weber MA , et al..; SPYRAL HTN-OFF MED trial investigators*: Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 390: 21602170, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Kandzari DE , Böhm M , Mahfoud F , Townsend RR , Weber MA , Pocock S , et al..; SPYRAL HTN-ON MED Trial Investigators: Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 391: 23462355, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Azizi M , Schmieder RE , Mahfoud F , Weber MA , Daemen J , Davies J , et al..; RADIANCE-HTN Investigators: Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 391: 23352345, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Fengler K , Rommel KP , Blazek S , Besler C , Hartung P , von Roeder M , et al..: A three-arm randomized trial of different renal denervation devices and techniques in patients with resistant hypertension (RADIOSOUND-HTN). Circulation 139: 590600, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Böhm M , Kario K , Kandzari DE , Mahfoud F , Weber MA , Schmieder RE , et al..; SPYRAL HTN-OFF MED Pivotal Investigators: Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED pivotal): a multicentre, randomised, sham-controlled trial [published online ahead of print Mar 27 2020]. Lancet doi: 10.1016/S0140-6736(20)30554-7, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Carnevale D , Perrotta M , Pallante F , Fardella V , Iacobucci R , Fardella S , et al..: A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nat Commun 7: 13035, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Lu H , Cassis LA , Kooi CWV , Daugherty A . Structure and functions of angiotensin. Hypertens Res 39: 492500, 2016 PubMed

  • 43.

    Karnik SS , Unal H , Kemp JR , Tirupula KC , Eguchi S , Vanderheyden PML , et al..: International Union of Basic and Clinical Pharmacology. XCIX. angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli [corrected]. Pharmacol Rev 67: 754819, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Schütten MT , Houben AJ , de Leeuw PW , Stehouwer CD : The link between adipose tissue renin-angiotensin-aldosterone system signaling and obesity-associated hypertension. Physiology (Bethesda) 32: 197209, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 45.

    Kobori H , Nangaku M , Navar LG , Nishiyama A : The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59: 251287, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Ferrario CM , Ahmad S , Varagic J , Cheng CP , Groban L , Wang H , et al..: Intracrine angiotensin II functions originate from noncanonical pathways in the human heart. Am J Physiol Heart Circ Physiol 311: H404H414, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Ramkumar N , Kohan DE : The (pro)renin receptor: an emerging player in hypertension and metabolic syndrome. Kidney Int 95: 10411052, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Nguyen G , Muller DN : The biology of the (pro)renin receptor. J Am Soc Nephrol 21: 1823, 2010 PubMed

  • 49.

    Castrop H , Höcherl K , Kurtz A , Schweda F , Todorov V , Wagner C : Physiology of kidney renin. Physiol Rev 90: 607673, 2010 PubMed

  • 50.

    Yang T , Xu C : Physiology and pathophysiology of the intrarenal renin-angiotensin system: an update. J Am Soc Nephrol 28: 10401049, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Stankovic AR , Fisher NDL , Hollenberg NK : Prorenin and angiotensin-dependent renal vasoconstriction in type 1 and type 2 diabetes. J Am Soc Nephrol 17: 32933299, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Nguyen G , Delarue F , Burcklé C , Bouzhir L , Giller T , Sraer JD : Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109: 14171427, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Ichihara A , Yatabe MS : The (pro)renin receptor in health and disease. Nat Rev Nephrol 15: 693712, 2019 PubMed

  • 54.

    Riquier-Brison ADM , Sipos A , Prókai Á , Vargas SL , Toma L , Meer EJ , et al..: The macula densa prorenin receptor is essential in renin release and blood pressure control. Am J Physiol Renal Physiol 315: F521F534, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Briones AM , Nguyen Dinh Cat A , Callera GE , Yogi A , Burger D , He Y , et al..: Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension 59: 10691078, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Schling P , Schäfer T : Human adipose tissue cells keep tight control on the angiotensin II levels in their vicinity. J Biol Chem 277: 4806648075, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Yiannikouris F , Karounos M , Charnigo R , English VL , Rateri DL , Daugherty A , et al..: Adipocyte-specific deficiency of angiotensinogen decreases plasma angiotensinogen concentration and systolic blood pressure in mice. Am J Physiol Regul Integr Comp Physiol 302: R244R251, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Yiannikouris F , Gupte M , Putnam K , Thatcher S , Charnigo R , Rateri DL , et al..: Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice. Hypertension 60: 15241530, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Wu CH , Mohammadmoradi S , Thompson J , Su W , Gong M , Nguyen G , et al..: Adipocyte (pro)renin-receptor deficiency induces lipodystrophy, liver steatosis and increases blood pressure in male mice. Hypertension 68: 213219, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Gatineau E , Cohn DM , Poglitsch M , Loria AS , Gong M , Yiannikouris F : Losartan prevents the elevation of blood pressure in adipose-PRR deficient female mice while elevated circulating sPRR activates the renin-angiotensin system. Am J Physiol Heart Circ Physiol 316: H506H515, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Levy D , DeStefano AL , Larson MG , O'Donnell CJ , Lifton RP , Gavras H , et al.. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham heart study. Hypertension 36: 477483, 2000 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Hopkins PN , Hunt SC . Genetics of hypertension. Genet Med 5: 413429, 2003 PubMed

  • 63.

    Samani NJ : Genome scans for hypertension and blood pressure regulation. Am J Hypertens 16: 167171, 2003 PubMed

  • 64.

    Cooper RS , Guo X , Rotimi CN , Luke A , Ward R , Adeyemo A , et al..: Heritability of angiotensin-converting enzyme and angiotensinogen: a comparison of US blacks and Nigerians. Hypertension 35: 11411147, 2000 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Ehret GB , Munroe PB , Rice KM , Bochud M , Johnson AD , Chasman DI , et al..; Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478: 103109, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Ehret GB , Ferreira T , Chasman DI , Jacks103on AU , Schmidt EM , Johnson T , et al..; CHARGE-EchoGen consortium; CHARGE-HF consortium; Wellcome Trust Case Control Consortium: The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet 48: 11711184, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Surendran P , Drenos F , Young R , Warren H , Cook JP , Manning AK , et al..; CHARGE-Heart Failure Consortium; EchoGen Consortium; METASTROKE Consortium; GIANT Consortium; EPIC-InterAct Consortium; Lifelines Cohort Study; Wellcome Trust Case Control Consortium; Understanding Society Scientific Group; EPIC-CVD Consortium; CHARGE+ Exome Chip Blood Pressure Consortium; T2D-GENES Consortium; GoT2DGenes Consortium; ExomeBP Consortium; CHD Exome+ Consortium: Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet 48: 11511161, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Cho YS , Go MJ , Kim YJ , Heo JY , Oh JH , Ban HJ , et al..: A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 41: 527534, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Kato N , Takeuchi F , Tabara Y , Kelly TN , Go MJ , Sim X , et al..: Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet 43: 531538, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Kato N , Loh M , Takeuchi F , Verweij N , Wang X , Zhang W , et al..; BIOS-consortium; CARDIo GRAMplusCD; LifeLines Cohort Study; InterAct Consortium: Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat Genet 47: 12821293, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Liu C , Kraja AT , Smith JA , Brody JA , Franceschini N , Bis JC , et al..; CHD Exome+ Consortium; ExomeBP Consortium; GoT2DGenes Consortium; T2D-GENES Consortium; Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia; CKDGen Consortium: Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat Genet 48: 11621170, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Warren HR , Evangelou E , Cabrera CP , Gao H , Ren M , Mifsud B , et al..; International Consortium of Blood Pressure (ICBP) 1000G Analyses; BIOS Consortium; Lifelines Cohort Study; Understanding Society Scientific group; CHD Exome+ Consortium; ExomeBP Consortium; T2D-GENES Consortium; GoT2DGenes Consortium; Cohorts for Heart and Ageing Research in Genome Epidemiology (CHARGE) BP Exome Consortium; International Genomics of Blood Pressure (iGEN-BP) Consortium; UK Biobank CardioMetabolic Consortium BP working group: Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet 49: 403415, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Cicila GT , Rapp JP , Wang JM , St Lezin E , Ng SC , Kurtz TW : Linkage of 11 beta-hydroxylase mutations with altered steroid biosynthesis and blood pressure in the Dahl rat. Nat Genet 3: 346353, 1993 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Crespo K , Chauvet C , Blain M , Ménard A , Roy J , Deng AY : Normotension in Lewis and Dahl salt-resistant rats is governed by different genes. J Hypertens 29: 460465, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    White PC . Inherited forms of mineralocorticoid hypertension. Hypertension 1996;28:927-36.

  • 76.

    Lifton RP , Dluhy RG , Powers M , Rich GM , Cook S , Ulick S , et al..: A chimaeric 11 β-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 355: 262265, 1992 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Lifton RP , Dluhy RG , Powers M , Rich GM , Gutkin M , Fallo F , et al..: Hereditary hypertension caused by chimaeric gene duplications and ectopic expression of aldosterone synthase. Nat Genet 2: 6674, 1992 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Kiang KM , Leung GK : A review on adducin from functional to pathological mechanisms: future direction in cancer. BioMed Res Int 2018: 3465929, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Kaiser HW , O’Keefe E , Bennett V : Adducin: Ca++-dependent association with sites of cell-cell contact. J Cell Biol 109: 557569, 1989 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Cusi D , Barlassina C , Azzani T , Casari G , Citterio L , Devoto M , et al..: Polymorphisms of alpha-adducin and salt sensitivity in patients with essential hypertension. Lancet 349: 13531357, 1997 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Bianchi G , Tripodi G , Casari G , Salardi S , Barber BR , Garcia R , et al..: Two point mutations within the adducin genes are involved in blood pressure variation. Proc Natl Acad Sci U S A 91: 39994003, 1994 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Torielli L , Tivodar S , Montella RC , Iacone R , Padoani G , Tarsini P , et al..: Alpha-adducin mutations increase Na/K pump activity in renal cells by affecting constitutive endocytosis: implications for tubular Na reabsorption. Am J Physiol Renal Physiol 295: F478F487, 2008 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Rossier BC , Bochud M , Devuyst O : The hypertension pandemic: an evolutionary perspective. Physiology (Bethesda) 32: 112125, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 84.

    Garrison RJ , Kannel WB , Stokes J 3rd , Castelli WP : Incidence and precursors of hypertension in young adults: the Framingham Offspring Study. Prev Med 16: 235251, 1987 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Hall JE , do Carmo JM , da Silva AA , Wang Z , Hall ME : Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol 15: 367385, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Neter JE , Stam BE , Kok FJ , Grobbee DE , Geleijnse JM : Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 42: 878884, 2003 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Ohashi K , Kihara S , Ouchi N , Kumada M , Fujita K , Hiuge A , et al..: Adiponectin replenishment ameliorates obesity-related hypertension. Hypertension 47: 11081116, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Mark AL , Agassandian K , Morgan DA , Liu X , Cassell MD , Rahmouni K : Leptin signaling in the nucleus tractus solitarii increases sympathetic nerve activity to the kidney. Hypertension 53: 375380, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    Ding W , Cheng H , Chen F , Yan Y , Zhang M , Zhao X , et al..: Adipokines are associated with hypertension in metabolically healthy obese (MHO) children and adolescents: a prospective population-based cohort study. J Epidemiol 28: 1926, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Havas S , Roccella EJ , Lenfant C : Reducing the public health burden from elevated blood pressure levels in the United States by lowering intake of dietary sodium. Am J Public Health 94: 1922, 2004 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    He FJ , Pombo-Rodrigues S , Macgregor GA : Salt reduction in England from 2003 to 2011: its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open 4: e004549–e004549, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Mente A , O’Donnell MJ , Rangarajan S , McQueen MJ , Poirier P , Wielgosz A , et al..; PURE Investigators: Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med 371: 601611, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Mozaffarian D , Fahimi S , Singh GM , Micha R , Khatibzadeh S , Engell RE , et al..; Global Burden of Diseases Nutrition and Chronic Diseases Expert Group: Global sodium consumption and death from cardiovascular causes. N Engl J Med 371: 624634, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    McDonough AA , Veiras LC , Guevara CA , Ralph DL : Cardiovascular benefits associated with higher dietary K+ vs. lower dietary Na+: evidence from population and mechanistic studies. Am J Physiol Endocrinol Metab 312: E348E356, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95.

    Clase CM , Carrero JJ , Ellison DH , Grams ME , Hemmelgarn BR , Jardine MJ , et al..; Conference Participants: Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int 97: 4261, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    Gritter M , Rotmans JI , Hoorn EJ : Role of dietary K+ in natriuresis, blood pressure reduction, cardiovascular protection, and renoprotection. Hypertension 73: 1523, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97.

    Araki S , Haneda M , Koya D , Kondo K , Tanaka S , Arima H , et al..: Urinary potassium excretion and renal and cardiovascular complications in patients with type 2 diabetes and normal renal function. Clin J Am Soc Nephrol 10: 21522158, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98.

    Mun KH , Yu GI , Choi BY , Kim MK , Shin MH , Shin DH : Association of dietary potassium intake with the development of chronic kidney disease and renal function in patients with mildly decreased kidney function: the Korean multi-rural communities cohort study. Med Sci Monit 25: 10611070, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Mente A , O’Donnell M , Rangarajan S , Dagenais G , Lear S , McQueen M , et al..; PURE, EPIDREAM and ONTARGET/TRANSCEND Investigators: Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet 388: 465475, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100.

    National Academies of Sciences, Engineering, and Medicine. Dietary Reference Intakes for sodium and potassium, Washington, DC, The National Academies Press, 2019

    • Search Google Scholar
    • Export Citation
  • 101.

    Newberry SJ , Chung M , Anderson CAM , Chen C , Fu Z , Tang A , et al..: Sodium and Potassium Intake: Effects on Chronic Disease Outcomes and Risks. In: Comparative Effectiveness Review, No. 206. Rockville, MD, Agency for Healthcare Research and Quality, 2018

    • Search Google Scholar
    • Export Citation
  • 102.

    Governing Board of the National Research Council: Dietary Reference Intakes: The essential guide to nutrient requirements, National Academy of Sciences, 2006

    • Search Google Scholar
    • Export Citation
  • 103.

    Lamelas PM , Mente A , Diaz R , Orlandini A , Avezum A , Oliveira G , et al..: Association of urinary sodium excretion with blood pressure and cardiovascular clinical events in 17,033 Latin Americans. Am J Hypertens 29: 796805, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 104.

    Cogswell ME , Mugavero K , Bowman BA , Frieden TR : Dietary sodium and cardiovascular disease risk: measurement matters. N Engl J Med 375: 580586, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105.

    Anderson CAM , Appel LJ , Okuda N , Brown IJ , Chan Q , Zhao L , et al..: Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40 to 59 years: the INTERMAP study. J Am Diet Assoc 110: 736745, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 106.

    Weiss JN , Qu Z , Shivkumar K : Electrophysiology of hypokalemia and hyperkalemia. Circ Arrhythm Electrophysiol 10: e004667, 2017 PubMed

  • 107.

    Gritter M , Vogt L , Yeung SMH , Wouda RD , Ramakers CRB , de Borst MH , et al..: Rationale and design of a randomized placebo-controlled clinical trial assessing the renoprotective effects of potassium supplementation in chronic kidney disease. Nephron 140: 4857, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 108.

    Elliott P , Dyer A , Stamler R ; INTERSALT Co-operative Research Group: The INTERSALT study: results for 24 hour sodium and potassium, by age and sex. J Hum Hypertens 3: 323330, 1989 PubMed

    • Search Google Scholar
    • Export Citation
  • 109.

    Yang Q , Liu T , Kuklina EV , Flanders WD , Hong Y , Gillespie C , et al..: Sodium and potassium intake and mortality among US adults: prospective data from the third national health and nutrition examination survey. Arch Intern Med 171: 11831191, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 110.

    Kieneker LM , Gansevoort RT , Mukamal KJ , de Boer RA , Navis G , Bakker SJL , et al.. Urinary potassium excretion and risk of developing hypertension: the prevention of renal and vascular end-stage disease study. Hypertension 64: 769776, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 111.

    Kim HW , Park JT , Yoo TH , Lee J , Chung W , Lee KB , et al..; KNOW-CKD Study Investigators: Urinary potassium excretion and progression of CKD. Clin J Am Soc Nephrol 14: 330340, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 112.

    Juraschek SP , Miller ER 3rd , Weaver CM , Appel LJ : Effects of sodium reduction and the DASH Diet in relation to baseline blood pressure. J Am Coll Cardiol 70: 28412848, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 113.

    McDonough AA , Youn JH : Potassium homeostasis: the knowns, the unknowns, and the health benefits. Physiology (Bethesda) 32: 100111, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 114.

    Terker AS , Zhang C , McCormick JA , Lazelle RA , Zhang C , Meermeier NP , et al..: Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab 21: 3950, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 115.

    McDonough AA , Youn JH : Need to quickly excrete K(+)? Turn off NCC. Kidney Int 83: 779782, 2013 PubMed

  • 116.

    Yang L , Xu S , Guo X , Uchida S , Weinstein AM , Wang T , et al..: Regulation of renal Na transporters in response to dietary K. Am J Physiol Renal Physiol 315: F1032F1041, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 117.

    Krupp D , Esche J , Mensink GBM , Klenow S , Thamm M , Remer T : Dietary acid load and potassium intake associate with blood pressure and hypertension prevalence in a representative sample of the German adult population. Nutrients 10: 103, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 118.

    Institute of Medicine: Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate, Washington, DC, National Academies Press, 2005

    • Search Google Scholar
    • Export Citation
  • 119.

    Neal B , Tian M , Li N , Elliott P , Yan LL , Labarthe DR , et al..: Rationale, design, and baseline characteristics of the salt substitute and stroke study (SSaSS): a large-scale cluster randomized controlled trial. Am Heart J 188: 109117, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 120.

    Drewnowski A , Rehm CD , Maillot M , Monsivais P : The relation of potassium and sodium intakes to diet cost among U.S. adults. J Hum Hypertens 29: 1421, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 121.

    Pearson-Stuttard J , Bandosz P , Rehm CD , Penalvo J , Whitsel L , Gaziano T , et al..: Reducing US cardiovascular disease burden and disparities through national and targeted dietary policies: a modelling study. PLoS Med 14: e1002311, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 122.

    Go AS , Mozaffarian D , Roger VL , Benjamin EJ , Berry JD , Blaha MJ , et al..; American Heart Association Statistics Committee and Stroke Statistics Subcommittee: Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 129: e28e292, 2014 PubMed

    • Search Google Scholar
    • Export Citation
  • 123.

    Babelova A , Burckhardt BC , Wegner W , Burckhardt G , Henjakovic M : Sex-differences in renal expression of selected transporters and transcription factors in lean and obese Zucker spontaneously hypertensive fatty rats. J Diabetes Res 2015: 483238, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 124.

    Whelton PK , Carey RM , Aronow WS , Casey DE Jr , Collins KJ , Dennison Himmelfarb C , et al..: 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension 71: e13e115, 2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 125.

    Maric-Bilkan C , Arnold AP , Taylor DA , Dwinell M , Howlett SE , Wenger N , et al.. Report of the National Heart, Lung, and Blood Institute working group on sex differences research in cardiovascular disease: scientific questions and challenges. Hypertension 67: 802807, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 126.

    Mannon EC , Ray SC , Ryan MJ , Sullivan JC : Does sex matter?: an update on the implementation of sex as a biological variable in research. Am J Physiol Renal Physiol 318: F329F331, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 127.

    Veiras LC , Girardi ACC , Curry J , Pei L , Ralph DL , Tran A , et al..: Sexual dimorphic pattern of renal transporters and electrolyte homeostasis. J Am Soc Nephrol 28: 35043517, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 128.

    Hu R , McDonough AA , Layton AT : Functional implications of the sex differences in transporter abundance along the rat nephron: modeling and analysis. Am J Physiol Renal Physiol 317: F1462F1474, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 129.

    Li Q , McDonough AA , Layton HE , Layton AT : Functional implications of sexual dimorphism of transporter patterns along the rat proximal tubule: modeling and analysis. Am J Physiol Renal Physiol 315: F692F700, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 130.

    Edwards A , McDonough AA : Impact of angiotensin II-mediated stimulation of sodium transporters in the nephron assessed by computational modeling. Am J Physiol Renal Physiol 317: F1656F1668, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 131.

    Sabolic I , Vrhovac I , Eror DB , Gerasimova M , Rose M , Breljak D , et al..: Expression of Na+-D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am J Physiol Cell Physiol 302: C1174C1188, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 132.

    Veiras LC , McFarlin BE , Ralph DL , Buncha V , Prescott J , Shirvani BS , et al..: Electrolyte and transporter responses to angiotensin II induced hypertension in female and male rats and mice. Acta Physiol (Oxf) 229: e13448, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 133.

    He J , Gu D , Chen J , Jaquish CE , Rao DC , Hixson JE , et al..; GenSalt Collaborative Research Group: Gender difference in blood pressure responses to dietary sodium intervention in the GenSalt study. J Hypertens 27: 4854, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 134.

    USDA Agricultural Research Services 2019. Usual Nutrient Intake from Food and Beverages, by Gender and Age, What We Eat in America, NHANES 2013-2016. Available at: www.ars.usda.gov/nea/bhnrc/fsrg. Accessed May 6, 2020.

  • 135.

    Vaidya A , Mulatero P , Baudrand R , Adler GK : The expanding spectrum of primary aldosteronism: implications for diagnosis, pathogenesis, and treatment. Endocr Rev 39: 10571088, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 136.

    Herrmann SM , Textor SC : Current concepts in the treatment of renovascular hypertension. Am J Hypertens 31: 139149, 2018 PubMed

  • 137.

    Coen G , Manni M , Giannoni MF , Bianchini G , Calabria S , Mantella D , et al..: Ischemic nephropathy in an elderly nephrologic and hypertensive population. Am J Nephrol 18: 221227, 1998 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 138.

    Gloviczki ML , Glockner JF , Lerman LO , McKusick MA , Misra S , Grande JP , et al..: Preserved oxygenation despite reduced blood flow in poststenotic kidneys in human atherosclerotic renal artery stenosis. Hypertension 55: 961966, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 139.

    Greite R , Thorenz A , Chen R , Jang MS , Rong S , Brownstein MJ , et al..: Renal ischemia-reperfusion injury causes hypertension and renal perfusion impairment in the CD1 mice which promotes progressive renal fibrosis. Am J Physiol Renal Physiol 314: F881F892, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 140.

    Pechman KR , De Miguel C , Lund H , Leonard EC , Basile DP , Mattson DL : Recovery from renal ischemia-reperfusion injury is associated with altered renal hemodynamics, blunted pressure natriuresis, and sodium-sensitive hypertension. Am J Physiol Regul Integr Comp Physiol 297: R1358R1363, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 141.

    Kelly KJ , Williams WWJ Jr , Colvin RB , Meehan SM , Springer TA , Gutierrez-Ramos JC , et al..: Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97: 10561063, 1996 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 142.

    Kinsey GR , Okusa MD : Role of leukocytes in the pathogenesis of acute kidney injury. Crit Care 16: 214, 2012 PubMed

  • 143.

    Abe C , Inoue T , Inglis MA , Viar KE , Huang L , Ye H , et al..: C1 neurons mediate a stress-induced anti-inflammatory reflex in mice. Nat Neurosci 20: 700707, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 144.

    Inoue T , Abe C , Sung SS , Moscalu S , Jankowski J , Huang L , et al..: Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes. J Clin Invest 126: 19391952, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 145.

    Gigliotti JC , Huang L , Bajwa A , Ye H , Mace EH , Hossack JA , et al..: Ultrasound modulates the splenic neuroimmune axis in attenuating AKI. J Am Soc Nephrol 26: 24702481, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 146.

    Gigliotti JC , Huang L , Ye H , Bajwa A , Chattrabhuti K , Lee S , et al..: Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J Am Soc Nephrol 24: 14511460, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 147.

    Neumann HPH , Young WF Jr , Eng C : Pheochromocytoma and paraganglioma. N Engl J Med 381: 552565, 2019 PubMed

  • 148.

    Pappachan JM , Tun NN , Arunagirinathan G , Sodi R , Hanna FWF : Pheochromocytoma and hypertension. Curr Hypertens Rep 20: 3, 2018 PubMed

Metrics

All Time Past Year Past 30 Days
Abstract Views 701 701 10
Full Text Views 28 28 12
PDF Downloads 41 41 19