Diabetic Kidney Disease
By:
José Luis Górriz Nephrology Department, University Clinical Hospital, Valencia, Spain

University of Valencia, Valencia, Spain

RICORS2040-Renal, Instituto de Salud Carlos III, Madrid

Search for other papers by José Luis Górriz in
Current site
Google Scholar
PubMed
Close
and
Juan F. Navarro-González Nephrology Department and Research Division, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain

Institute of Biomedical Technologies, University of La Laguna, Tenerife, Spain

Faculty of Health Science, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain

RICORS2040-Renal, Instituto de Salud Carlos III, Madrid

Search for other papers by Juan F. Navarro-González in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1.

    Burrows NR, Koyama A, Pavkov ME: Reported cases of endstage kidney disease—United States, 2000–2019. MMWR Morb Mortal Wkly Rep 71: 412415, 2022 10.15585/mmwr.mm7111a3 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Tuttle KR, Wong L, St Peter W, Roberts G, Rangaswami J, Mottl A, et al.; Diabetic Kidney Disease Collaborative Task Force: Moving from evidence to implementation of breakthrough therapies for diabetic kidney disease. Clin J Am Soc Nephrol 17: 10921103, 2022 10.2215/CJN.02980322 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Kim K, Crook J, Lu CC, Nyman H, Sarker J, Nelson R, et al.: Healthcare costs across diabetic kidney disease stages: A Veterans Affairs study. Kidney Med 18: 100873, 2024 10.1016/j.xkme.2024.100873 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    de Boer IH, Khunti K, Sadusky T, Tuttle KR, Neumiller JJ, Rhee CM, et al.: Diabetes management in chronic kidney disease: A consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 102: 974989, 2022 10.1016/j.kint.2022.08.012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kramer HJ, Nguyen QD, Curhan G, Hsu CY: Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA 289: 32733277, 2003 10.1001/jama.289.24.3273 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Oshima M, Shimizu M, Yamanouchi M, Toyama T, Hara A, Furuichi K, et al.: Trajectories of kidney function in diabetes: A clinicopathological update. Nat Rev Nephrol 17: 740750, 2021 10.1038/s41581-021-00462-y PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Rossing P, Caramori ML, Chan JCN, Heerspink HJL, Hurst C, Khunti K, et al.: KDIGO clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int 102: S1S127, 2022 10.1016/j.kint.2022.06.008 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    American Diabetes Association Professional Practice Committee: 11: Chronic kidney disease and risk management: Standards of Care in Diabetes—2025. Diabetes Care 48: S239S251, 2025 10.2337/dc25-S011 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Miller WG, Kaufman HW, Levey AS, Straseski JA, Wilhelms KW, Elsie HY, et al.: National Kidney Foundation Laboratory Engagement Working Group recommendations for implementing the CKD-EPI 2021 race-free equations for estimated glomerular filtration rate: Practical guidance for clinical laboratories. Clin Chem 68: 511520, 2022 10.1093/clinchem/hvab278 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Inker LA, Eneanya ND, Coresh J, Tighiouart H, Wang D, Sang Y, et al.; Chronic Kidney Disease Epidemiology Collaboration: New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med 385: 17371749, 2021 10.1056/NEJMoa2102953 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Mende CW, Bloomgarden Z: Measurement of renal function: Should cystatin C be more widely used for people with diabetes? J Diabetes 16: e13534, 2024 10.1111/1753-0407.13534 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group: KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int 105: S117S314, 2024 10.1016/j.kint.2023.10.018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Stempniewicz N, Vassalotti JA, Cuddeback JK, Ciemins E, Storfer-Isser A, Sang Y, et al.: Chronic kidney disease testing among primary care patients with type 2 diabetes across 24 U.S. health care organizations. Diabetes Care 44: 20002009, 2021 10.2337/dc20-2715 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Edmonston D, Lydon E, Mulder H, Chiswell K, Lampron Z, Marsolo K, et al.: Concordance with screening and treatment guidelines for chronic kidney disease in type 2 diabetes. JAMA Netw Open 7: e2418808, 2024 10.1001/jamanetworkopen.2024.18808 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Sperl-Hillen J, Crain AL, Wetmore JB, Chumba LN, O’Connor PJ: A CKD clinical decision support system: A cluster randomized clinical trial in primary care clinics. Kidney Med 6: 100777, 2024 10.1016/j.xkme.2023.100777 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Kotsis F, Bächle H, Altenbuchinger M, Dönitz J, Njipouombe Nsangou YA, Meiselbach H, et al.: Expectation of clinical decision support systems: A survey study among nephrologist end-users. BMC Med Inform Decis Mak 23: 239, 2023 10.1186/s12911-023-02317-x PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Sun Y, Ren Y, Lan P, Yu X, Feng J, Hao D, et al.: Clinico-pathological features of diabetic and non-diabetic renal diseases in type 2 diabetic patients: A retrospective study from a 10-year experience in a single center. Int Urol Nephrol 55: 23032312, 2023 10.1007/s11255-023-03478-4 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Basu M, Pulai S, Neogi S, Banerjee M, Bhattacharyya NP, Sengupta S, et al.: Prevalence of non-diabetic kidney disease and inability of clinical predictors to differentiate it from diabetic kidney disease: Results from a prospectively performed renal biopsy study. BMJ Open Diabetes Res Care 10: e003058, 2022 10.1136/bmjdrc-2022-003058 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Bermejo S, González E, López-Revuelta K, Ibernon M, López D, Martín-Gómez A, et al.: Risk factors for non-diabetic renal disease in diabetic patients. Clin Kidney J 13: 380388, 2020 10.1093/ckj/sfz177 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Dong Z, Wang Y, Qiu Q, Zhang X, Zhang L, Wu J, et al.: Clinical predictors differentiating non-diabetic renal diseases from diabetic nephropathy in a large population of type 2 diabetes patients. Diabetes Res Clin Pract 121: 112118, 2016 10.1016/j.diabres.2016.09.005 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kritmetapak K, Anutrakulchai S, Pongchaiyakul C, Puapairoj A: Clinical and pathological characteristics of non-diabetic renal disease in type 2 diabetes patients. Clin Kidney J 11: 342347, 2018 10.1093/ckj/sfx111 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    McFarlane P, Cherney D, Gilbert RE, Senior P, Diabetes Canada Clinical Practice Guidelines Expert Committee: Chronic kidney disease in diabetes. Can J Diabetes 42[Suppl 1]: S201S209, 2018 10.1016/j.jcjd.2017.11.004 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Zhang W, Liu X, Dong Z, Wang Q, Pei Z, Chen Y, et al.: New diagnostic model for the differentiation of diabetic nephropathy from non-diabetic nephropathy in Chinese patients. Front Endocrinol (Lausanne) 13: 913021, 2022 10.3389/fendo.2022.913021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Chu L, Fuller M, Jervis K, Ciaccia A, Abitbol A: Prevalence of chronic kidney disease in type 2 diabetes: The Canadian Registry of Chronic Kidney Disease in Diabetes Outcomes (CREDO) study. Clin Ther 43: 15581573, 2021 10.1016/j.clinthera.2021.07.015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Morales J, Handelsman Y: Cardiovascular outcomes in patients with diabetes and kidney disease: JACC review topic of the week. J Am Coll Cardiol 82: 161170, 2023 10.1016/j.jacc.2023.04.052 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Matsushita K, Ballew SH, Wang AY, Kalyesubula R, Schaeffner E, Agarwal R: Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nat Rev Nephrol 18: 696707, 2022 10.1038/s41581-022-00616-6 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Swamy S, Noor SM, Mathew RO: Cardiovascular disease in diabetes and chronic kidney disease. J Clin Med 12: 6984, 2023 10.3390/jcm12226984 PubMed

  • 28.

    Jankowski J, Floege J, Fliser D, Böhm M, Marx N: Cardiovascular disease in chronic kidney disease. Pathophysiological insights and therapeutic options. Circulation 143: 11571172, 2021 10.1161/CIRCULATIONAHA.120.050686 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Kishor S, Chen J, Zhang Y, Liu W, Zhu L, Xu J, et al.: Interaction of proteinuria and diabetes on the risk of cardiovascular events: A prospective cohort CKD-ROUTE study. BMC Public Health 24: 3192, 2024 10.1186/s12889-024-20715-2 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Gerstein HC, Mian R, Ramasundarahettige C, Branch KRH, Del Prato S, Lam CSP, et al.: Cardiovascular and renal outcomes with varying degrees of kidney disease in high-risk people with type 2 diabetes: An epidemiological analysis of data from the AMPLITUDE-O trial. Diabetes Obes Metab 26: 12161223, 2024 10.1111/dom.15417 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Marx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ, et al.; ESC Scientific Document Group: 2023 ESC guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J 44: 40434140, 2023 10.1093/eurheartj/ehad192 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ndumele CE, Neeland IJ, Tuttle KR, Chow SL, Mathew RO, Khan SS, et al.; American Heart Association: A synopsis of the evidence for the science and clinical management of cardiovascular-kidney-metabolic (CKM) syndrome: A scientific statement from the American Heart Association. Circulation 148: 16361664, 2023 10.1161/CIR.0000000000001186 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Khan SS, Coresh J, Pencina MJ, Ndumele CE, Rangaswami J, Chow SL, et al.; American Heart Association: Novel prediction equations for absolute risk assessment of total cardiovascular disease incorporating cardiovascular-kidney-metabolic health: A scientific statement from the American Heart Association. Circulation 148: 19822004, 2023 10.1161/CIR.0000000000001191 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Rayego-Mateos S, Rodrigues-Diez RR, Fernandez-Fernandez B, Mora-Fernández C, Marchant V, Donate-Correa J, et al.: Targeting inflammation to treat diabetic kidney disease: The road to 2030. Kidney Int 103: 282296, 2023 10.1016/j.kint.2022.10.030 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Liu Z, Liu J, Wang W, An X, Luo L, Yu D, et al.: Epigenetic modification in diabetic kidney disease. Front Endocrinol (Lausanne) 14: 1133970, 2023 10.3389/fendo.2023.1133970 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Chen Z, Malek V, Natarajan R: Update: The role of epigenetics in the metabolic memory of diabetic complications. Am J Physiol Renal Physiol 327: F327F339, 2024 10.1152/ajprenal.00115.2024 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Tian J, Chen J, Sun Q, Huang T, Xu H, Wang J, et al.: Effects of the S1P/S1PR1 signaling pathway on high glucose-induced NRK-52E epithelial-mesenchymal transition via regulation of ROS/NLRP3 [published online ahead of print Aug 7, 2024]. Inflammation, doi:10.1007/s10753-024-02118-y PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Zhang X, Chen J, Lin R, Huang Y, Wang Z, Xu S, et al.: Lactate drives epithelial-mesenchymal transition in diabetic kidney disease via the H3K14la/KLF5 pathway. Redox Biol 75: 103246, 2024  PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Chen Y, Zou H, Lu H, Xiang H, Chen S: Research progress of endothelial‐mesenchymal transition in diabetic kidney disease. J Cell Mol Med 26: 33133322, 2022 10.1111/jcmm.17356 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Sheng Y, Zhang C, Huang J, Wang D, Xiao Q, Zhang H, et al.: Comparison of conventional mathematical model and machine learning model based on recent advances in mathematical models for predicting diabetic kidney disease. Digit Health 10: 20552076241238093, 2024 10.1177/20552076241238093 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Dholariya S, Dutta S, Sonagra A, Kaliya M, Singh R, Parchwani D, et al.: Unveiling the utility of artificial intelligence for prediction, diagnosis, and progression of diabetic kidney disease: An evidence-based systematic review and meta-analysis. Curr Med Res Opin 13: 131, 2024 10.1080/03007995.2024.2423737  PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Han YZ, Zheng HJ, Du BX, Zhang Y, Zhu XY, Li J, et al.: Role of gut microbiota, immune imbalance, and allostatic load in the occurrence and development of diabetic kidney disease. J Diabetes Res 2023: 8871677, 2023 10.1155/2023/8871677 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Zhou P, Hao Z, Chen Y, Zhang Z, Xu W, Yu J: Association between gut microbiota and diabetic microvascular complications: A two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 15: 1364280, 2024 10.3389/fendo.2024.1364280 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Tan W, Chen J, Wang Y, Xiang K, Lu X, Han Q, et al.: Single-cell RNA sequencing in diabetic kidney disease: A literature review. Ren Fail 46: 2387428, 2024 10.1080/0886022X.2024.2387428 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Zhang X, Chao P, Zhang L, Xu L, Cui X, Wang S, et al.: Single-cell RNA and transcriptome sequencing profiles identify immune-associated key genes in the development of diabetic kidney disease. Front Immunol 14: 1030198, 2023 10.3389/fimmu.2023.1030198 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Luo Y, Liu L, Zhang C: Identification and analysis of diverse cell death patterns in diabetic kidney disease using microarray-based transcriptome profiling and single-nucleus RNA sequencing. Comput Biol Med 169: 107780, 2024 10.1016/j.compbiomed.2023.107780 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Li D, Hsu FC, Palmer ND, Liu L, Choi YA, Murea M, et al.: Multiomics analyses identify AKR1A1 as a biomarker for diabetic kidney disease. Diabetes 73: 11881195, 2024 10.2337/db23-0540 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Hirohama D, Abedini A, Moon S, Surapaneni A, Dillon ST, Vassalotti A, et al.: Unbiased human kidney tissue proteomics identifies matrix metalloproteinase 7 as a kidney disease biomarker. J Am Soc Nephrol 34: 12791291, 2023 10.1681/ASN.0000000000000141 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Poulsen CG, Jesse K, Carstensen B, Frimodt-Møller M, Hansen TW, Persson F, Vistisen D, et al.: Prognosis for type 1 diabetes with diabetic nephropathy between 2000 and 2020 - Changes in kidney function decline over time and development of cardiovascular disease, kidney failure, and mortality. Kidney Int Rep 9: 34033413, 2024 10.1016/j.ekir.2024.09.010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    European Medicines Agency: Public statement: Forxiga 5mg should no longer be used for the treatment of type 1 diabetes mellitus, 2021. Available at: https://www.ema.europa.eu/en/medicines/dhpc/forxiga. Accessed November 23, 2023

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    European Medicines Agency: Public statement: Zynquista—Withdrawal of the marketing authorisation in the European Union, 2022. Available at: https://www.ema.europa.eu/en/documents/public-statement/public-statement-zynquista-withdrawal-marketing-authorisation-european-union_en.pdf. Accessed November 23, 2023

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al.; FIDELIO-DKD Investigators: Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med 383: 22192229, 2020 10.1056/NEJMoa2025845 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, et al.; FIGARO-DKD Investigators: Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med 385: 22522263, 2021 10.1056/NEJMoa2110956 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Agarwal R, Kolkhof P, Bakris G, Bauersachs J, Haller H, Wada T, et al.: Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur Heart J 42: 152161, 2021 10.1093/eurheartj/ehaa736 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Heerspink HJL, Birkenfeld AL, Cherney DZI, Colhoun HM, Ji L, Mathieu C, et al.: Rationale and design of a randomised phase III registration trial investigating finerenone in participants with type 1 diabetes and chronic kidney disease: The FINE-ONE trial. Diabetes Res Clin Pract 204: 110908, 2023 10.1016/j.diabres.2023.110908 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Sloan L: SGLT2 inhibitors across the spectrum of chronic kidney disease: A narrative review. Postgrad Med 136: 801809, 2024 10.1080/00325481.2024.2418795 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Mora-Fernández C, Sánchez-Niño MD, Donate-Correa J, Martín-Núñez E, Pérez-Delgado N, Valiño-Rivas L, et al.: Sodium-glucose co-transporter-2 inhibitors increase Klotho in patients with diabetic kidney disease: A clinical and experimental study. Biomed Pharmacother 154: 113677, 2022 10.1016/j.biopha.2022.113677 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Lieverse TTGF, Puchades MJ, Mulder UDJ, Provenzano M, Krenning G, Jongs N, et al.: Glomerular and tubular effects of dapagliflozin, eplerenone and their combination in patients with chronic kidney disease: A post-hoc analysis of the ROTATE-3 study. Diabetes Obes Metab 26: 576582, 2024 10.1111/dom.15346 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Kintscher U, Bakris GL, Kolkhof P: Novel non-steroidal mineralocorticoid receptor antagonists in cardiorenal disease. Br J Pharmacol 179: 32203234, 2022 10.1111/bph.15747 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Bakris GL, Ruilope LM, Anker SD, Filippatos G, Pitt B, Rossing P, et al.; FIDELIO-DKD and FIGARO-DKD Investigators: A prespecified exploratory analysis from FIDELITY examined finerenone use and kidney outcomes in patients with chronic kidney disease and type 2 diabetes. Kidney Int 103: 196206, 2023 10.1016/j.kint.2022.08.040 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Agarwal R, Tu W, Farjat AE, Farag YMK, Toto R, Kaul S, et al.; FIDELIO-DKD and FIGARO-DKD Investigators: Impact of finerenone-induced albuminuria reduction on chronic kidney disease outcomes in type 2 diabetes: A mediation analysis. Ann Intern Med 176: 16061616, 2023 10.7326/M23-1023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Nicholas SB, Correa-Rotter R, Desai NR, Guo L, Navaneethan SD, Pantalone KM, et al.: First interim results from FINE-REAL: A prospective, non-interventional, phase 4 study providing insights into the use and safety of finerenone in a routine clinical setting. J Nephrol 37: 22232232, 2024 10.1007/s40620-024-02070-y PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Ast J, Nasteska D, Fine NHF, Nieves DJ, Koszegi Z, Lanoiselée Y, et al.: Revealing the tissue level complexity of endogenous glucagon-like peptide-1 receptor expression and signaling. Nat Commun 14: 301, 2023 10.1038/s41467-022-35716-1 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Lee B, Holstein-Rathlou NH, Sosnovtseva O, Sørensen CM: Renoprotective effects of GLP-1 receptor agonists and SGLT-2 inhibitors-is hemodynamics the key point? Am J Physiol Cell Physiol 325: C243C256, 2023 10.1152/ajpcell.00147.2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Rivera FB, Cruz LLA, Magalong JV, Ruyeras JMMJ, Aparece JP, Bantayan NRB, et al.: Cardiovascular and renal outcomes of glucagon-like peptide 1 receptor agonists among patients with and without type 2 diabetes mellitus: A meta-analysis of randomized placebo-controlled trials. Am J Prev Cardiol 18: 100679100679, 2024 10.1016/j.ajpc.2024.100679 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Mann JFE, Ørsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S, et al.; LEADER Steering Committee and Investigators: Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med 377: 839848, 2017 10.1056/NEJMoa1616011 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al.; REWIND Investigators: Dulaglutide and renal outcomes in type 2 diabetes: An exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet 394: 131138, 2019 10.1016/S0140-6736(19)31150-X PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, SUSTAIN-6 Investigators, et al.: Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375: 18341844, 2016 10.1056/NEJMoa1607141 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Perkovic V, Tuttle KR, Rossing P, Mahaffey KW, Mann JFE, Bakris G, FLOW Trial Committees and Investigators, et al.: Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N Engl J Med 391: 109121, 2024 10.1056/NEJMoa2403347 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    ElSayed NA, McCoy RG, Aleppo G, Bajaj M, Balapattabi K, Beverly EA, et al.; American Diabetes Association Professional Practice Committee: Pharmacologic approaches to glycemic treatment: Standards of Care in Diabetes. Diabetes Care 48: S181S206, 2025 10.2337/dc25-S009 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Apperloo EM, Neuen BL, Fletcher RA, Jongs N, Anker SD, Bhatt DL, et al.: Efficacy and safety of SGLT2 inhibitors with and without glucagon-like peptide 1 receptor agonists: A SMART-C collaborative meta-analysis of randomised controlled trials. Lancet Diabetes Endocrinol 12: 545557, 2024 10.1016/S2213-8587(24)00155-4 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Mann JFE, Buse JB, Idorn T, Leiter LA, Pratley RE, Rasmussen S, et al.: Potential kidney protection with liraglutide and semaglutide: Exploratory mediation analysis. Diabetes Obes Metab 23: 20582066, 2021 10.1111/dom.14443 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Asmar A, Cramon PK, Simonsen L, Asmar M, Sorensen CM, Madsbad S, et al.: Extracellular fluid volume expansion uncovers a natriuretic action of GLP-1: A functional GLP-1-renal axis in man. J Clin Endocrinol Metab 104: 25092519, 2019 10.1210/jc.2019-00004 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Haddock B, Kristensen KB, Tayyab M, Larsson HBW, Lindberg U, Vestergaard M, et al.: GLP-1 promotes cortical and medullary perfusion in the human kidney and maintains renal oxygenation during NaCl loading. J Am Heart Assoc 12: e027712, 2023 10.1161/JAHA.122.027712 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Apperloo EM, Gorriz JL, Soler MJ, Cigarrán Guldris S, Cruzado JM, Puchades MJ, et al.: Semaglutide in patients with overweight or obesity and chronic kidney disease without diabetes: A randomized double-blind placebo-controlled clinical trial. Nat Med 31: 278285, 2024 10.1038/s41591-024-03327-6 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Colhoun HM, Lingvay I, Brown PM, Deanfield J, Brown-Frandsen K, Kahn SE, et al.: Long-term kidney outcomes of semaglutide in obesity and cardiovascular disease in the SELECT trial. Nat Med 30: 20582066, 2024 10.1038/s41591-024-03015-5 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Badve SV, Bilal A, Lee MMY, Sattar N, Gerstein HC, Ruff CT, et al.: Effects of GLP-1 receptor agonists on kidney and cardiovascular disease outcomes: A meta-analysis of randomised controlled trials. Lancet Diabetes Endocrinol 13: 1528, 2025 10.1016/S2213-8587(24)00271-7 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Yang C-T, Yao W-Y, Ou H-T, Kuo S: Value of GLP-1 receptor agonists versus long-acting insulins for type 2 diabetes patients with and without established cardiovascular or chronic kidney diseases: A model-based cost-effectiveness analysis using real-world data. Diabetes Res Clin Pract 198: 110625, 2023 10.1016/j.diabres.2023.110625 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Ivković V, Bruchfeld A: Endothelin receptor antagonists in diabetic and non-diabetic chronic kidney disease. Clin Kidney J 17: sfae072, 2024 10.1093/ckj/sfae072 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Heerspink HJL, Parving H-H, Andress DL, Bakris G, Correa-Rotter R, Hou F-F, et al.; SONAR Committees and Investigators: Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): A double-blind, randomised, placebo-controlled trial. Lancet 393: 19371947, 2019 10.1016/S0140-6736(19)30772-X PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Heerspink HJL, Kiyosue A, Wheeler DC, Lin M, Wijkmark E, Carlson G, et al.: Zibotentan in combination with dapagliflozin compared with dapagliflozin in patients with chronic kidney disease (ZENITH-CKD): A multicentre, randomised, active-controlled, phase 2b, clinical trial. Lancet 402: 20042017, 2023 10.1016/S0140-6736(23)02230-4 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Smeijer JD, Wasehuus VS, Dhaun N, Górriz JL, Soler MJ, Åstrand M, et al.: Effects of zibotentan alone and in combination with dapagliflozin on fluid retention in patients with CKD. J Am Soc Nephrol 35: 13811390, 2024 10.1681/ASN.0000000000000436 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Carlström M: Nitric oxide signalling in kidney regulation and cardiometabolic health. Nat Rev Nephrol 17: 575590, 2021 10.1038/s41581-021-00429-z PubMed

  • 84.

    Krishnan SM, Kraehling JR, Eitner F, Benardeau A, Sandner P: The impact of the nitric oxide (NO)/soluble guanylyl cyclase (sGC) signaling cascade on kidney health and disease: A preclinical perspective. Int J Mol Sci 19: 1712, 2018 10.3390/ijms19061712 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Heerspink HJL, Cherney D, Gafor AHA, Górriz JL, Pergola PE, Tang SCW, et al.: Effect of avenciguat on albuminuria in patients with CKD: Two randomized placebo-controlled trials. J Am Soc Nephrol 35: 12271239, 2024 10.1681/ASN.0000000000000418 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Gansevoort RT, Wheeler DC, Debén FM, Speeckaert M, Thomas D, Berger M, et al.: The soluble guanylate cyclase activator runcaciguat significantly improves albuminuria in patients with chronic kidney disease: A randomized placebo-controlled clinical trial. Nephrol Dial Transplant 3: gfae261, 2024 10.1093/ndt/gfae261 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Götzinger F, Kunz M, Lauder L, Böhm M, Mahfoud F: New ways of mitigating aldosterone in cardiorenal disease. Eur Heart J Cardiovasc Pharmacother 10: 557565, 2024 10.1093/ehjcvp/pvae049 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Verma S, Pandey A, Pandey AK, Butler J, Lee JS, Teoh H, et al.: Aldosterone and aldosterone synthase inhibitors in cardiorenal disease. Am J Physiol Heart Circ Physiol 326: H670H688, 2024 10.1152/ajpheart.00419.2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Bornstein SR, de Zeeuw D, Heerspink HJL, Schulze F, Cronin L, Wenz A, et al.: Aldosterone synthase inhibitor (BI 690517) therapy for people with diabetes and albuminuric chronic kidney disease: A multicentre, randomized, double-blind, placebo-controlled, Phase I trial. Diabetes Obes Metab 26: 21282138, 2024 10.1111/dom.15518 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Tuttle KR, Hauske SJ, Canziani ME, Caramori ML, Cherney D, Cronin L, et al.; ASi in CKD group: Efficacy and safety of aldosterone synthase inhibition with and without empagliflozin for chronic kidney disease: A randomised, controlled, phase 2 trial. Lancet 403: 379390, 2024 10.1016/S0140-6736(23)02408-X PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Judge PK, Tuttle KR, Staplin N, Hauske SJ, Zhu D, Sardell R, et al.: The potential for improving cardio-renal outcomes in chronic kidney disease with the aldosterone synthase inhibitor vicadrostat (BI 690517): A rationale for the EASi-KIDNEY trial. Nephrol Dial Transplant 12: gfae263, 2024 10.1093/ndt/gfae263 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Neuen BL, Heerspink HJL, Vart P, Claggett BL, Fletcher RA, Arnott C, et al.: Estimated lifetime cardiovascular, kidney, and mortality benefits of combination treatment with SGLT2 inhibitors, GLP-1 receptor agonists, and nonsteroidal MRA compared with conventional care in patients with type 2 diabetes and albuminuria. Circulation 149: 450462, 2024 10.1161/CIRCULATIONAHA.123.067584 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Handelsman Y, Anderson JE, Bakris GL, Ballantyne CM, Beckman JA, Bhatt DL, et al.: DCRM multispecialty practice recommendations for the management of diabetes, cardiorenal, and metabolic diseases. J Diabetes Complications 36: 108101, 2022 10.1016/j.jdiacomp.2021.108101 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Handelsman Y, Anderson JE, Bakris GL, Ballantyne CM, Bhatt DL, Bloomgarden ZT, et al.: DCRM 2.0: Multispecialty practice recommendations for the management of diabetes, cardiorenal, and metabolic diseases. Metabolism 159: 155931, 2024 10.1016/j.metabol.2024.155931 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Rikin S, Bauman L, Arnaoudova I, DiPalo K, Suda N, Gupta S, et al.: Multidisciplinary proactive e-consults to improve guideline-directed medical therapies for patients with diabetes and chronic kidney disease: an implementation study. BMJ Open Diabetes Res Care 12: e004155, 2024 10.1136/bmjdrc-2024-004155 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    ElSayed NA, McCoy RG, Aleppo G, Bajaj M, Balapattabi K, Beverly EA, et al.; American Diabetes Association Professional Practice Committee: Comprehensive medical evaluation and assessment of comorbidities: Standards of Care in Diabetes—2024. Diabetes Care 48: S59S85, 2025 10.2337/dc25-S004 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Kelepouris E, St Peter W, Neumiller JJ, Wright EE: Optimizing multidisciplinary care of patients with chronic kidney disease and type 2 diabetes mellitus. Diabetes Ther 14: 11111136, 2023 10.1007/s13300-023-01416-2 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Brendon N, Tuttle KR, Bakris G, Vaduganathan M: Reframing chronicity with urgency in chronic kidney disease management. CJASN 19: 12091211, 2024 https://doi.org/10.2215/CJN.0000000000000526

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1257 1257 1205
Full Text Views 163 163 99
PDF Downloads 252 252 142