CKD Coming of Age
By:
Adeera Levin Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Adeera Levin in
Current site
Google Scholar
PubMed
Close
and
Paul E. Stevens East Kent Hospitals University NHS Foundation Trust, Canterbury, United Kingdom

Search for other papers by Paul E. Stevens in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1.

    Kidney Disease: Improving Global Outcomes CKD Work Group: KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int 105: S117S314, 2024 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Kovesdy CP: Epidemiology of chronic kidney disease: An update 2022. Kidney Int Suppl (2011) 12: 711, 2022 PubMed

  • 3.

    Luyckx VA, Tuttle KR, Abdellatif D, Correa-Rotter R, Fung WWS, Haris A, et al.; World Kidney Day Joint Steering Committee: Mind the gap in kidney care: Translating what we know into what we do. Kidney Int 105: 406417, 2024 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Feng X, Hou N, Chen Z, Liu J, Li X, Sun X, et al.: Secular trends of epidemiologic patterns of chronic kidney disease over three decades: An updated analysis of the Global Burden of Disease Study 2019. BMJ Open 13: e064540, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Nuffield Department of Population Health Renal Studies Group. SGLT Inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium: Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: Collaborative meta-analysis of large placebo controlled trials. Lancet 400: 17881801, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    National Kidney Foundation: K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am J Kidney Dis 39: S1S266, 2002 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kidney Disease: Improving Global Outcomes CKD Work Group: KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3: S1S150, 2012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al.; CREDENCE Trial Investigators: Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380: 22952306, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al.; DAPA-CKD Trial Committees and Investigators: Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383: 14361446, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, Emberson JR, et al.; The EMPA-KIDNEY Collaborative Group: Empagliflozin in patients with chronic kidney disease. N Engl J Med 388: 117127, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Agarwal R, Filippatos G, Pitt B, Anker SD, Rossing P, Joseph A, et al.; FIDELIO-DKD and FIGARO-DKD investigators: Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: The FIDELITY pooled analysis. Eur Heart J 43: 474484, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Colombijn JMT, Idema DL, van Beem S, Blokland AM, van der Braak K, Handoko ML, et al.: Representation of patients with chronic kidney disease in clinical trials of cardiovascular disease medications: A systematic review. JAMA Netw Open 7: e240427, 2024 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hussain J, Grubic N, Akbari A, Canney M, Elliott MJ, Ravani P, et al.: Associations between modest reductions in kidney function and adverse outcomes in young adults: Retrospective, population based cohort study. BMJ 381: e075062, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Grams ME, Coresh J, Matsushita K, Ballew SH, Sang Y, Surapaneni A, et al.; Writing Group for the CKD Prognosis Consortium: Estimated glomerular filtration rate, albuminuria, and adverse outcomes: An individual-participant data meta-analysis. JAMA 330: 12661277, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Shlipak MG, Tummalapalli SL, Boulware LE, Grams ME, Ix JH, Jha V, et al.; Conference Participants: The case for early identification and intervention of chronic kidney disease: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 99: 3447, PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Rowe C, Sitch AJ, Barratt J, Brettell EA, Cockwell P, Dalton RN, et al.; eGFR-C Study Group: Biological variation of measured and estimated glomerular filtration rate in patients with chronic kidney disease. Kidney Int 96: 429435, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Inker LA, Levey AS: Knowing your GFR—When is the number not (exactly) the number? Kidney Int 96: 280282, 2019 PubMed

  • 18.

    Tangri N, Stevens LA, Griffith J, Tighiouart H, Djurdjev O, Naimark D, et al.: A predictive model for progression of chronic kidney disease to kidney failure. JAMA 305: 15531559, 2011 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Tangri N, Kitsios GD, Inker LA, Griffith J, Naimark DM, Walker S, et al.: Risk prediction models for patients with chronic kidney disease: A systematic review. Ann Intern Med 158: 596603, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Tangri N, Grams ME, Levey AS, Coresh J, Appel LJ, Astor BC, et al.; CKD Prognosis Consortium: Multinational assessment of accuracy of equations for predicting risk of kidney failure a meta-analysis. JAMA 315: 164174, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ramspek CL, de Jong Y, Dekker FW, van Diepen M: Towards the best kidney failure prediction tool: A systematic review and selection aid. Nephrol Dial Transplant 35: 15271538, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    National Institute for Health and Care Excellence: Evidence Review for the Best Combination of Measures to Identify Increased Risk of Progression in Adults, Children and Young People: Chronic Kidney Disease, NICE, 2021

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Grams ME, Brunskill NJ, Ballew SH, Sang Y, Coresh J, Matsushita K, et al.; CKD Prognosis Consortium: Development and validation of prediction models of adverse kidney outcomes in the population with and without diabetes. Diabetes Care 45: 20552063, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    CKD Prognosis Consortium: Risk models, 2019. Available at: https://www.ckdpc.org/risk-models.html. Accessed May 29, 2024

    • PubMed
    • Export Citation
  • 25.

    Hippisley-Cox J, Coupland C, Brindle P: Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: Prospective cohort study. BMJ 357: j2099, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Matsushita K, Jassal SK, Sang Y, Ballew SH, Grams ME, Surapaneni A, et al.: Incorporating kidney disease measures into cardiovascular risk prediction: Development and validation in 9 million adults from 72 datasets. EClinicalMedicine 27: 100552, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Khan SS, Coresh J, Pencina MJ, Ndumele CE, Rangaswami J, Chow SL, et al.; American Heart Association: Novel prediction equations for absolute risk assessment of total cardiovascular disease incorporating cardiovascular-kidney-metabolic health: A scientific statement from the American Heart Association. Circulation 148: 19822004, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Khan SS, Matsushita K, Sang Y, Ballew SH, Grams ME, Surapaneni A, et al.; Chronic Kidney Disease Prognosis Consortium and the American Heart Association Cardiovascular-Kidney-Metabolic Science Advisory Group: Development and validation of the American Heart Association’s PREVENT equations. Circulation 149: 430449, 2024 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Potok OA, Nguyen HA, Abdelmalek JA, Beben T, Woodell TB, Rifkin DE: Patients, ‘nephrologists,’ and predicted estimations of ESKD risk compared with 2-year incidence of ESKD. Clin J Am Soc Nephrol 14: 206212, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Atiquzzaman M, Zhu B, Romann A, Er L, Djurdjev O, Bevilacqua M, et al.: Kidney Failure Risk Equation in vascular access planning: A population-based study supporting value in decision making. Clin Kidney J 17: sfae008, 2024 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Marques da Silva B, Dores M, Silva O, Pereira M, Outerelo C, Fortes A, et al.: Planning vascular access creation: The promising role of the kidney failure risk equation. J Vasc Access 11297298231186373, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Lundström UH, Ramspek CL, Dekker FW, van Diepen M, Carrero JJ, Hedin U, et al.: Clinical impact of the Kidney Failure Risk Equation for vascular access planning [published online ahead of print Mar 14, 2024]. Nephrol Dial Transplant 10.1093/ndt/gfae064 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Liu P, Sawhney S, Heide-Jørgensen U, Quinn RR, Jensen SK, Mclean A, et al.: Predicting the risks of kidney failure and death in adults with moderate to severe chronic kidney disease: Multinational, longitudinal, population based, cohort study. BMJ 385: e078063, 2024 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Kelly JT, Su G, Zhang L, Qin X, Marshall S, González-Ortiz A, et al.: Modifiable lifestyle factors for primary prevention of CKD: A systematic review and meta-analysis. J Am Soc Nephrol 32: 239253, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Storz MA, Ronco AL, Hannibal L: Observational and clinical evidence that plant-based nutrition reduces dietary acid load. J Nutr Sci 11: e93, 2022 PubMed

  • 36.

    Bernier-Jean A, Prince RL, Lewis JR, Craig JC, Hodgson JM, Lim WH, et al.: Dietary plant and animal protein intake and decline in estimated glomerular filtration rate among elderly women: A 10-year longitudinal cohort study. Nephrol Dial Transplant 36: 16401647, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Joshi S, McMacken M, Kalantar-Zadeh K: Plant-based diets for kidney disease: A guide for clinicians. Am J Kidney Dis 77: 287296, 2021 PubMed

  • 38.

    Kidney Disease: Improving Global Outcomes Blood Pressure Work Group: KDIGO 2021 clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int 99: S1S87, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Park CH, Kim HW, Joo YS, Park JT, Chang TI, Yoo T-H, et al.; KNOW-CKD (KoreaN Cohort Study for Outcomes in Patients With Chronic Kidney Disease) Investigators: Findings from the KNOW-CKD Study indicate that higher systolic blood pressure time in target range is associated with a lower risk of chronic kidney disease progression. Kidney Int 105: 835843, 2024 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Xie X, Liu Y, Perkovic V, Li X, Ninomiya T, Hou W, et al.: Renin-angiotensin system inhibitors and kidney and cardiovascular outcomes in patients with CKD: A Bayesian network meta-analysis of randomized clinical trials. Am J Kidney Dis 67: 728741, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Jafar TH, Schmid CH, Landa M, Giatras I, Toto R, Remuzzi G, et al.: Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data [published erratum appears in Ann Intern Med 137: 299, 2002]. Ann Intern Med 135: 7387, 2001 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Kanda E, Rastogi A, Murohara T, Lesén E, Agiro A, Arnold M, et al.: Clinical impact of suboptimal RAASi therapy following an episode of hyperkalemia. BMC Nephrol 24: 18, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Qiao Y, Shin J-I, Chen TK, Inker LA, Coresh J, Alexander GC, et al.: Association between renin-angiotensin system blockade discontinuation and all-cause mortality among persons with low estimated glomerular filtration rate. JAMA Intern Med 180: 718726, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Fu EL, Evans M, Clase CM, Tomlinson LA, van Diepen M, Dekker FW, et al.: Stopping renin-angiotensin system inhibitors in patients with advanced CKD and risk of adverse outcomes: A nationwide study. J Am Soc Nephrol 32: 424435, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Humphrey TJL, James G, Wittbrodt ET, Zarzuela D, Hiemstra TF: Adverse clinical outcomes associated with RAAS inhibitor discontinuation: Analysis of over 400000 patients from the UK Clinical Practice Research Datalink (CPRD). Clin Kidney J 14: 22032212, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Bhandari S, Mehta S, Khwaja A, Cleland JGF, Ives N, Brettell E, et al.; STOP ACEi Trial Investigators: Renin-angiotensin system inhibition in advanced chronic kidney disease. N Engl J Med 387: 20212032, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Fletcher BR, Damery S, Aiyegbusi OL, Anderson N, Calvert M, Cockwell P, et al.: Symptom burden and health-related quality of life in chronic kidney disease: A global systematic review and meta-analysis. PLoS Med 19: e1003954, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Stigant CE, Barraclough KA, Harber M, Kanagasundaram NS, Malik C, Jha V, et al.: Our shared responsibility: The urgent necessity of global environmentally sustainable kidney care. Kidney Int 104: 1215, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Barraclough KA, Moller S, Blair S, Knight R, Agar JW, McAlister S, et al.: Updating the data: The resource consumption of modern-day hemodialysis systems. Kidney Int Rep 9: 15211524, 2024 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 2826 2826 96
Full Text Views 316 316 23
PDF Downloads 370 370 32