Kidney Replacement Therapy in the ICU
By:
J. Pedro Teixeira Divisions of Nephrology and Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico

Search for other papers by J. Pedro Teixeira in
Current site
Google Scholar
PubMed
Close
and
Javier A. Neyra Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama

Search for other papers by Javier A. Neyra in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1.

    Hoste EAJ, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al.: Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med 41: 14111423, 2015 10.1007/s00134-015-3934-7 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bouchard J, Acharya A, Cerda J, Maccariello ER, Madarasu RC, Tolwani AJ, et al.: A prospective international multicenter study of AKI in the intensive care unit. Clin J Am Soc Nephrol 10: 13241331, 2015 10.2215/CJN.04360514 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators, et al.: Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA 294: 813818, 2005 10.1001/jama.294.7.813 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Gupta S, Coca SG, Chan L, Melamed ML, Brenner SK, Hayek SS, the STOP-COVID Investigators, et al.: AKI treated with renal replacement therapy in critically ill patients with COVID-19. J Am Soc Nephrol 32: 161176, 2021 10.1681/ASN.2020060897 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Palevsky PM, Zhang JH, O’Connor TZ, Chertow GM, Crowley ST, Choudhury D, VA/NIH Acute Renal Failure Trial Network, et al.: Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 359: 720, 2008 10.1056/NEJMoa0802639 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lo S, RENAL Replacement Therapy Study Investigators, et al.: Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 361: 16271638, 2009 10.1056/NEJMoa0902413 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Wald R, McArthur E, Adhikari NKJ, Bagshaw SM, Burns KEA, Garg AX, et al.: Changing incidence and outcomes following dialysis-requiring acute kidney injury among critically ill adults: A population-based cohort study. Am J Kidney Dis 65: 870877, 2015 10.1053/j.ajkd.2014.10.017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, Pavenstädt H, et al.: Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: The ELAIN randomized clinical trial. JAMA 315: 21902199, 2016 10.1001/jama.2016.5828 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Gaudry S, Hajage D, Schortgen F, Martin-Lefevre L, Pons B, Boulet E, AKIKI Study Group, et al.: Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med 375: 122133, 2016 10.1056/NEJMoa1603017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Barbar SD, Clere-Jehl R, Bourredjem A, Hernu R, Montini F, Bruyère R, et al.: Timing of renal-replacement therapy in patients with acute kidney injury and sepsis. N Engl J Med 379: 14311442, 2018 10.1056/NEJMoa1803213 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bagshaw SM, Wald R, Adhikari NKJ, Bellomo R, da Costa BR, Dreyfuss D, Irish Critical Care Trials Group, et al.: Timing of initiation of renal-replacement therapy in acute kidney injury. N Engl J Med 383: 240251, 2020 10.1056/NEJMoa2000741 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gaudry S, Hajage D, Martin-Lefevre L, Lebbah S, Louis G, Moschietto S, et al.: Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2): A multicentre, open-label, randomised, controlled trial. Lancet 397: 12931300, 2021 10.1016/S0140-6736(21)00350-0 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group: KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2: 1138, 2012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Meersch M, Küllmar M, Schmidt C, Gerss J, Weinhage T, Margraf A, et al.: Long-term clinical outcomes after early initiation of RRT in critically ill patients with AKI. J Am Soc Nephrol 29: 10111019, 2018 10.1681/ASN.2017060694 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Zampieri FG, da Costa BR, Vaara ST, Lamontagne F, Rochwerg B, Nichol AD, STARRT-AKI Investigators, et al.: A Bayesian reanalysis of the Standard versus Accelerated Initiation of Renal-Replacement Therapy in Acute Kidney Injury (STARRT-AKI) trial. Crit Care 26: 255, 2022 10.1186/s13054-022-04120-y PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Wald R, Kirkham B, daCosta BR, Ghamarian E, Adhikari NKJ, Beaubien-Souligny W, et al.: Fluid balance and renal replacement therapy initiation strategy: A secondary analysis of the STARRT-AKI trial. Crit Care 26: 360, 2022 10.1186/s13054-022-04229-0 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Naorungroj T, Neto AS, Yanase F, Eastwood G, Wald R, Bagshaw SM, et al.: Time to initiation of renal replacement therapy among critically ill patients with acute kidney injury: A current systematic review and meta-analysis. Crit Care Med 49: e781e792, 2021 10.1097/CCM.0000000000005018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Castro I, Relvas M, Gameiro J, Lopes JA, Monteiro-Soares M, Coentrão L: The impact of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury on mortality and clinical outcomes: A meta-analysis. Clin Kidney J 15: 19321945, 2022 10.1093/ckj/sfac139 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Zampieri FG, Serpa-Neto A, Wald R, Bellomo R, Bagshaw SM: Hierarchical endpoints in critical care: A post-hoc exploratory analysis of the standard versus accelerated initiation of renal-replacement therapy in acute kidney injury and the intensity of continuous renal-replacement therapy in critically ill patients trials. J Crit Care 82: 154767, 2024 10.1016/j.jcrc.2024.154767 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ostermann M, Bagshaw SM, Lumlertgul N, Wald R: Indications for and timing of initiation of KRT. Clin J Am Soc Nephrol 18: 113120, 2023 10.2215/CJN.05450522 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lumlertgul N, Peerapornratana S, Trakarnvanich T, Pongsittisak W, Surasit K, Chuasuwan A, for the FST Study Group, et al.: Early versus standard initiation of renal replacement therapy in furosemide stress test non-responsive acute kidney injury patients (the FST trial). Crit Care 22: 101, 2018 10.1186/s13054-018-2021-1 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Koyner JL, Chawla LS, Bihorac A, Gunnerson KJ, Schroeder R, Demirjian S, RUBY investigators, et al.: Performance of a standardized clinical assay for urinary C-C motif chemokine ligand 14 (CCL14) for persistent severe acute kidney injury. Kidney360 3: 11581168, 2022 10.34067/KID.0008002021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Chen Y-T, Pan H-C, Hsu C-K, Sun C-Y, Chen C-Y, Chen Y-H, et al.: Performance of urinary C-C motif chemokine ligand 14 for the prediction of persistent acute kidney injury: A systematic review and meta-analysis. Crit Care 27: 318, 2023 10.1186/s13054-023-04610-7 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Ostermann M, Zarbock A, Goldstein S, Kashani K, Macedo E, Murugan R, et al.: Recommendations on acute kidney injury biomarkers from the Acute Disease Quality Initiative Consensus Conference: A consensus statement. JAMA Netw Open 3: e2019209, 2020 10.1001/jamanetworkopen.2020.19209 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kelly YP, Mistry K, Ahmed S, Shaykevich S, Desai S, Lipsitz SR, et al.: Controlled study of decision-making algorithms for kidney replacement therapy initiation in acute kidney injury. Clin J Am Soc Nephrol 17: 194204, 2022 10.2215/CJN.02060221 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Blankestijn PJ, Vernooij RWM, Hockham C, Strippoli GFM, Canaud B, Hegbrant J, CONVINCE Scientific Committee Investigators, et al.: Effect of hemodiafiltration or hemodialysis on mortality in kidney failure. N Engl J Med 389: 700709, 2023 10.1056/NEJMoa2304820 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Friedrich JO, Wald R, Bagshaw SM, Burns KE, Adhikari NK: Hemofiltration compared to hemodialysis for acute kidney injury: Systematic review and meta-analysis. Crit Care 16: R146, 2012 10.1186/cc11458 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Combes A, Bréchot N, Amour J, Cozic N, Lebreton G, Guidon C, et al.: Early high-volume hemofiltration versus standard care for post-cardiac surgery shock. The HEROICS study. Am J Respir Crit Care Med 192: 11791190, 2015 10.1164/rccm.201503-0516OC PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Borthwick EM, Hill CJ, Rabindranath KS, Maxwell AP, McAuley DF, Blackwood B: High-volume haemofiltration for sepsis in adults. Cochrane Database Syst Rev 1: CD008075, 2017 10.1002/14651858.CD008075.pub3 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Califano AM, Bitker L, Baldwin I, Fealy N, Bellomo R: Circuit survival during continuous venovenous hemodialysis versus continuous venovenous hemofiltration. Blood Purif 49: 281288, 2020 10.1159/000504037 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Brain M, Winson E, Roodenburg O, McNeil J: Non anti-coagulant factors associated with filter life in continuous renal replacement therapy (CRRT): A systematic review and meta-analysis. BMC Nephrol 18: 69, 2017 10.1186/s12882-017-0445-5 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Mann L, Ten Eyck P, Wu C, Story M, Jenigiri S, Patel J, et al.: CVVHD results in longer filter life than pre-filter CVVH: Results of a quasi-randomized clinical trial. PLoS One 18: e0278550, 2023 10.1371/journal.pone.0278550 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Vinsonneau C, Camus C, Combes A, Costa de Beauregard MA, Klouche K, Boulain T, Hemodiafe Study Group, et al.: Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: A multicentre randomised trial. Lancet 368: 379385, 2006 10.1016/S0140-6736(06)69111-3 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Lins RL, Elseviers MM, Van der Niepen P, Hoste E, Malbrain ML, Damas P, SHARF investigators, et al.: Intermittent versus continuous renal replacement therapy for acute kidney injury patients admitted to the intensive care unit: Results of a randomized clinical trial. Nephrol Dial Transplant 24: 512518, 2009 10.1093/ndt/gfn560 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Schefold JC, von Haehling S, Pschowski R, Bender T, Berkmann C, Briegel S, et al.: The effect of continuous versus intermittent renal replacement therapy on the outcome of critically ill patients with acute renal failure (CONVINT): A prospective randomized controlled trial. Crit Care 18: R11, 2014 10.1186/cc13188 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Schneider AG, Bellomo R, Bagshaw SM, Glassford NJ, Lo S, Jun M, et al.: Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: A systematic review and meta-analysis. Intensive Care Med 39: 987997, 2013 10.1007/s00134-013-2864-5 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Naorungroj T, Neto AS, Wang A, Gallagher M, Bellomo R: Renal outcomes according to renal replacement therapy modality and treatment protocol in the ATN and RENAL trials. Crit Care 26: 269, 2022 10.1186/s13054-022-04151-5 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Gaudry S, Grolleau F, Barbar S, Martin-Lefevre L, Pons B, Boulet É, et al.: Continuous renal replacement therapy versus intermittent hemodialysis as first modality for renal replacement therapy in severe acute kidney injury: A secondary analysis of AKIKI and IDEAL-ICU studies. Crit Care 26: 93, 2022 10.1186/s13054-022-03955-9 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Wald R, Gaudry S, da Costa BR, Adhikari NKJ, Bellomo R, Du B, STARRT-AKI Investigators, et al.: Initiation of continuous renal replacement therapy versus intermittent hemodialysis in critically ill patients with severe acute kidney injury: A secondary analysis of STARRT-AKI trial. Intensive Care Med 49: 13051316, 2023 10.1007/s00134-023-07211-8 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Koyner JL, Mackey RH, Echeverri J, Rosenthal NA, Carabuena LA, Bronson-Lowe D, et al.: Initial renal replacement therapy (RRT) modality associates with 90-day postdischarge RRT dependence in critically ill AKI survivors. J Crit Care 82: 154764, 2024 10.1016/j.jcrc.2024.154764 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Nash DM, Przech S, Wald R, O’Reilly D: Systematic review and meta-analysis of renal replacement therapy modalities for acute kidney injury in the intensive care unit. J Crit Care 41: 138144, 2017 10.1016/j.jcrc.2017.05.002 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Zhao Y, Chen Y: Effect of renal replacement therapy modalities on renal recovery and mortality for acute kidney injury: A PRISMA-compliant systematic review and meta-analysis. Semin Dial 33: 127132, 2020 10.1111/sdi.12861 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Levine Z, Vijayan A: Prolonged intermittent kidney replacement therapy. CJASN 18: 383391, 2023 10.2215/CJN.04310422 PubMed

  • 44.

    Diaz-Buxo JA, Loredo JP: Standard Kt/V: Comparison of calculation methods. Artif Organs 30: 178185, 2006 10.1111/j.1525-1594.2006.00204.x PubMed

  • 45.

    Ghannoum M, Roberts DM, Hoffman RS, Ouellet G, Roy L, Decker BS, et al.: A stepwise approach for the management of poisoning with extracorporeal treatments. Semin Dial 27: 362370, 2014 10.1111/sdi.12228 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Clark WR, Leblanc M, Ricci Z, Ronco C: Quantification and dosing of renal replacement therapy in acute kidney injury: A reappraisal. Blood Purif 44: 140155, 2017 10.1159/000475457 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Augustine JJ, Sandy D, Seifert TH, Paganini EP: A randomized controlled trial comparing intermittent with continuous dialysis in patients with ARF. Am J Kidney Dis 44: 10001007, 2004 10.1053/j.ajkd.2004.08.022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, Program to Improve Care in Acute Renal Disease (PICARD) Study Group, et al.: Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int 76: 422427, 2009 10.1038/ki.2009.159 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Davenport A: Practical guidance for dialyzing a hemodialysis patient following acute brain injury. Hemodial Int 12: 307312, 2008 10.1111/j.1542-4758.2008.00271.x PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Davenport A: Continuous renal replacement therapies in patients with acute neurological injury. Semin Dial 22: 165168, 2009 10.1111/j.1525-139X.2008.00548.x PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Bowes E, Joslin J, Braide-Azikiwe DCB, Tulley C, Bramham K, Saha S, et al.: Acute peritoneal dialysis with percutaneous catheter insertion for COVID-19-associated acute kidney injury in intensive care: Experience from a UK tertiary center. Kidney Int Rep 6: 265271, 2021 10.1016/j.ekir.2020.11.038 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Chen W, Caplin N, El Shamy O, Sharma S, Sourial MY, Ross MJ, NYC-PD Consortium, et al.: Use of peritoneal dialysis for acute kidney injury during the COVID-19 pandemic in New York City: A multicenter observational study. Kidney Int 100: 25, 2021 10.1016/j.kint.2021.04.017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Gabriel DP, Caramori JT, Martim LC, Barretti P, Balbi AL: High volume peritoneal dialysis vs daily hemodialysis: A randomized, controlled trial in patients with acute kidney injury. Kidney Int Suppl : S87S93, 2008 10.1038/sj.ki.5002608 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Ponce D, Berbel MN, Abrao JM, Goes CR, Balbi AL: A randomized clinical trial of high volume peritoneal dialysis versus extended daily hemodialysis for acute kidney injury patients. Int Urol Nephrol 45: 869878, 2013 10.1007/s11255-012-0301-2 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Al-Hwiesh A, Abdul-Rahman I, Finkelstein F, Divino-Filho J, Qutub H, Al-Audah N, et al.: Acute kidney injury in critically ill patients: A prospective randomized study of tidal peritoneal dialysis versus continuous renal replacement therapy. Ther Apher Dial 22: 371379, 2018 10.1111/1744-9987.12660 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Chionh CY, Soni SS, Finkelstein FO, Ronco C, Cruz DN: Use of peritoneal dialysis in AKI: A systematic review. Clin J Am Soc Nephrol 8: 16491660, 2013 10.2215/CJN.01540213 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Liu L, Zhang L, Liu GJ, Fu P: Peritoneal dialysis for acute kidney injury. Cochrane Database Syst Rev 12: CD011457, 2017 10.1002/14651858.CD011457.pub2 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Cullis B, Al-Hwiesh A, Kilonzo K, McCulloch M, Niang A, Nourse P, et al.: ISPD guidelines for peritoneal dialysis in acute kidney injury: 2020 update (adults). Perit Dial Int 41: 1531, 2021 10.1177/0896860820970834 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Parienti J-J, Thirion M, Mégarbane B, Souweine B, Ouchikhe A, Polito A, Members of the Cathedia Study Group, et al.: Femoral vs jugular venous catheterization and risk of nosocomial events in adults requiring acute renal replacement therapy: A randomized controlled trial. JAMA 299: 24132422, 2008 10.1001/jama.299.20.2413 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Morgan D, Ho K, Murray C, Davies H, Louw J: A randomized trial of catheters of different lengths to achieve right atrium versus superior vena cava placement for continuous renal replacement therapy. Am J Kidney Dis 60: 272279, 2012 10.1053/j.ajkd.2012.01.021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Parienti J-J, Mégarbane B, Fischer M-O, Lautrette A, Gazui N, Marin N, Cathedia Study Group, et al.: Catheter dysfunction and dialysis performance according to vascular access among 736 critically ill adults requiring renal replacement therapy: A randomized controlled study. Crit Care Med 38: 11181125, 2010 10.1097/CCM.0b013e3181d454b3 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Timsit JF, Sebille V, Farkas JC, Misset B, Martin JB, Chevret S, et al.: Effect of subcutaneous tunneling on internal jugular catheter-related sepsis in critically ill patients: A prospective randomized multicenter study. JAMA 276: 14161420, 1996 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Weijmer MC, Vervloet MG, ter Wee PM: Compared to tunnelled cuffed haemodialysis catheters, temporary untunnelled catheters are associated with more complications already within 2 weeks of use. Nephrol Dial Transplant 19: 670677, 2004 10.1093/ndt/gfg581 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Mendu ML, May MF, Kaze AD, Graham DA, Cui S, Chen ME, et al.: Non-tunneled versus tunneled dialysis catheters for acute kidney injury requiring renal replacement therapy: A prospective cohort study. BMC Nephrol 18: 351, 2017 10.1186/s12882-017-0760-x PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Kächele M, Bettac L, Hofmann C, Herrmann H, Brandt A, Schröppel B, et al.: Feasibility analysis of ultrasound-guided placement of tunneled hemodialysis catheters. Kidney Int Rep 8: 20012007, 2023 10.1016/j.ekir.2023.07.038 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Kim DH, Youn S, Ban TH, Choi BS, Kim BS, Park CW, et al.: Safety and durable patency of tunneled hemodialysis catheter inserted without fluoroscopy. Kidney Res Clin Pract 42: 723730, 2023 10.23876/j.krcp.22.282 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Prasad P, Vachharajani TJ: Non-fluoroscopic techniques to insert a tunneled hemodialysis catheter. Kidney Int Rep 8: 21912193, 2023 10.1016/j.ekir.2023.09.023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Al Rifai A, Sukul N, Wonnacott R, Heung M: Safety of arteriovenous fistulae and grafts for continuous renal replacement therapy: The Michigan experience. Hemodial Int 22: 5055, 2018 10.1111/hdi.12550 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Santiago MJ, Sánchez A, López-Herce J, Pérez R, del Castillo J, Urbano J, et al.: The use of continuous renal replacement therapy in series with extracorporeal membrane oxygenation. Kidney Int 76: 12891292, 2009 10.1038/ki.2009.383 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    de Tymowski C, Desmard M, Lortat-Jacob B, Pellenc Q, Alkhoder S, Alouache A, et al.: Impact of connecting continuous renal replacement therapy to the extracorporeal membrane oxygenation circuit. Anaesth Crit Care Pain Med 37: 557564, 2018 10.1016/j.accpm.2018.02.024 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Thy M, Augustin P, Tran-Dinh A, Montravers P, de Tymowski C: Renal replacement therapy for patients requiring extracorporeal membrane oxygenation: A multicenter international survey. Blood Purif 51: 899906, 2022 10.1159/000522398 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Claure-Del Granado R, Macedo E, Chertow GM, Soroko S, Himmelfarb J, Ikizler TA, et al.: Effluent volume in continuous renal replacement therapy overestimates the delivered dose of dialysis. Clin J Am Soc Nephrol 6: 467475, 2011 10.2215/CJN.02500310 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Ruiz EF, Ortiz-Soriano VM, Talbott M, Klein BA, Thompson Bastin ML, Mayer KP, University of Kentucky CRRT Quality Assurance Group, et al.: Development, implementation and outcomes of a quality assurance system for the provision of continuous renal replacement therapy in the intensive care unit. Sci Rep 10: 20616, 2020 10.1038/s41598-020-76785-w PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Teixeira JP, Neyra JA, Tolwani A: Continuous KRT: A contemporary review. Clin J Am Soc Nephrol 18: 256269, 2023 10.2215/CJN.04350422 PubMed

  • 75.

    Fujii T, Namba Y, Fujitani S, Sasaki J, Narihara K, Shibagaki Y, et al.: Low-dose continuous renal replacement therapy for acute kidney injury. Int J Artif Organs 35: 525530, 2012 10.5301/ijao.5000110 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Uchino S, Toki N, Takeda K, Ohnuma T, Namba Y, Katayama S, Japanese Society for Physicians and Trainees in Intensive Care (JSEPTIC) Clinical Trial Group, et al.: Validity of low-intensity continuous renal replacement therapy. Crit Care Med 41: 25842591, 2013 10.1097/CCM.0b013e318298622e PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Division of Nephrology CUVCoP: Disaster response to the COVID-19 pandemic for patients with kidney disease in New York City. J Am Soc Nephrol 31: 13711379, 2020 10.1681/ASN.2020040520 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Teixeira JP, Saa L, Kaucher KA, Villanueva RD, Shieh M, Baca CR, et al.: Rapid implementation of an emergency on-site CKRT dialysate production system during the COVID-19 pandemic. BMC Nephrol 24: 245, 2023 10.1186/s12882-023-03260-9 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Schiffl H, Lang SM, Fischer R: Daily hemodialysis and the outcome of acute renal failure. N Engl J Med 346: 305310, 2002 10.1056/NEJMoa010877 PubMed

  • 80.

    Faulhaber-Walter R, Hafer C, Jahr N, Vahlbruch J, Hoy L, Haller H, et al.: The Hannover Dialysis Outcome study: Comparison of standard versus intensified extended dialysis for treatment of patients with acute kidney injury in the intensive care unit. Nephrol Dial Transplant 24: 21792186, 2009 10.1093/ndt/gfp035 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Evanson JA, Himmelfarb J, Wingard R, Knights S, Shyr Y, Schulman G, et al.: Prescribed versus delivered dialysis in acute renal failure patients. Am J Kidney Dis 32: 731738, 1998 10.1016/s0272-6386(98)70127-1 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Liang KV, Zhang JH, Palevsky PM: Urea reduction ratio may be a simpler approach for measurement of adequacy of intermittent hemodialysis in acute kidney injury. BMC Nephrol 20: 82, 2019 10.1186/s12882-019-1272-7 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Ponce D, Brito GA, Abrao JG, Balb AL: Different prescribed doses of high-volume peritoneal dialysis and outcome of patients with acute kidney injury. Adv Perit Dial 27: 118124, 2011 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Parapiboon W, Jamratpan T: Intensive versus minimal standard dosage for peritoneal dialysis in acute kidney injury: A randomized pilot study. Perit Dial Int 37: 523528, 2017 10.3747/pdi.2016.00260 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Liu C, Mao Z, Kang H, Hu J, Zhou F: Regional citrate versus heparin anticoagulation for continuous renal replacement therapy in critically ill patients: A meta-analysis with trial sequential analysis of randomized controlled trials. Crit Care 20: 144, 2016 10.1186/s13054-016-1299-0 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Zheng Y, Zhuang F, Zhu Q, Ma S, Xu Y, Lu J, et al.: Albumin-corrected total/ionized calcium ratio is not superior to total/ionized calcium ratio as an indicator of citrate accumulation. Int J Artif Organs 40: 602606, 2017 10.5301/ijao.5000621 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Davenport A, Tolwani A: Citrate anticoagulation for continuous renal replacement therapy (CRRT) in patients with acute kidney injury admitted to the intensive care unit. NDT Plus 2: 439447, 2009 10.1093/ndtplus/sfp136 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Neyra JA, Yessayan L, Thompson Bastin ML, Wille KM, Tolwani AJ: How to prescribe and troubleshoot continuous renal replacement therapy: A case-based review. Kidney360 2: 371384, 2021 10.34067/KID.0004912020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Meier-Kriesche HU, Gitomer J, Finkel K, DuBose T: Increased total to ionized calcium ratio during continuous venovenous hemodialysis with regional citrate anticoagulation. Crit Care Med 29: 748752, 2001 10.1097/00003246-200104000-00010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Zarbock A, Küllmar M, Kindgen-Milles D, Wempe C, Gerss J, Brandenburger T, RICH Investigators and the Sepnet Trial Group, et al.: Effect of regional citrate anticoagulation vs systemic heparin anticoagulation during continuous kidney replacement therapy on dialysis filter life span and mortality among critically ill patients with acute kidney injury: A randomized clinical trial. JAMA 324: 16291639, 2020 10.1001/jama.2020.18618 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Gerss J, Meersch M, Kindgen-Milles D, Brandenburger T, Willam C, Kellum JA, et al.: The effect of filter lifespan during continuous renal replacement therapy in critically ill patients with AKI on the rate of new onset infection: Analysis from the RICH randomized controlled trial. Am J Respir Crit Care Med 206: 511514, 2022 10.1164/rccm.202201-0063LE PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Tiranathanagul K, Jearnsujitwimol O, Susantitaphong P, Kijkriengkraikul N, Leelahavanichkul A, Srisawat N, et al.: Regional citrate anticoagulation reduces polymorphonuclear cell degranulation in critically ill patients treated with continuous venovenous hemofiltration. Ther Apher Dial 15: 556564, 2011 10.1111/j.1744-9987.2011.00996.x PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Di Marco GS, Chasan AI, Boeckel GR, Beul K, Pavenstädt H, Roth J, et al.: Monocytes as targets for immunomodulation by regional citrate anticoagulation. Int J Mol Sci 25: 2900, 2024 10.3390/ijms25052900 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Tan J-N, Haroon SWP, Mukhopadhyay A, Lau T, Murali TM, Phua J, et al.: Hyperlactatemia predicts citrate intolerance with regional citrate anticoagulation during continuous renal replacement therapy. J Intensive Care Med 34: 418425, 2019 10.1177/0885066617701068 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Zhang W, Bai M, Yu Y, Li L, Zhao L, Sun S, et al.: Safety and efficacy of regional citrate anticoagulation for continuous renal replacement therapy in liver failure patients: A systematic review and meta-analysis. Crit Care 23: 22, 2019 10.1186/s13054-019-2317-9 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Szamosfalvi B, Puri V, Sohaney R, Wagner B, Riddle A, Dickinson S, et al.: Regional citrate anticoagulation protocol for patients with presumed absent citrate metabolism. Kidney360 2: 192204, 2021 10.34067/KID.0005342020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Chua HR, Baldwin I, Bailey M, Subramaniam A, Bellomo R: Circuit lifespan during continuous renal replacement therapy for combined liver and kidney failure. J Crit Care 27: 744 e747–744.15, 2012 10.1016/j.jcrc.2012.08.016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Pelusio C, Endres P, Neyra JA, Allegretti AS: Renal replacement therapy in cirrhosis: A contemporary review. Adv Kidney Dis Health 31: 133138, 2024 10.1053/j.akdh.2024.01.003 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Bai M, Yu Y, Zhao L, Tian X, Zhou M, Jiao J, et al.: Regional citrate anticoagulation versus no anticoagulation for CKRT in patients with liver failure with increased bleeding risk. Clin J Am Soc Nephrol 19: 151160, 2023 10.2215/CJN.0000000000000351 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Lin Y, Shao Y, Liu Y, Yang R, Liao S, Yang S, et al.: Efficacy and safety of nafamostat mesilate anticoagulation in blood purification treatment of critically ill patients: A systematic review and meta-analysis. Ren Fail 44: 12631279, 2022 10.1080/0886022X.2022.2105233 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Miyaji MJ, Ide K, Takashima K, Maeno M, Krallman KA, Lazear D, et al.: Comparison of nafamostat mesilate to citrate anticoagulation in pediatric continuous kidney replacement therapy. Pediatr Nephrol 37: 27332742, 2022 10.1007/s00467-022-05502-8 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Liu D, Zhao J, Xia H, Dong S, Yan S, Zhuang Y, et al.: Nafamostat mesylate versus regional citrate anticoagulation for continuous renal replacement therapy in patients at high risk of bleeding: A retrospective single-center study. Eur J Med Res 29: 72, 2024 10.1186/s40001-024-01660-7 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Fealy N, Aitken L, Du Toit E, Lo S, Baldwin I: Faster blood flow rate does not improve circuit life in continuous renal replacement therapy: A randomized controlled trial. Crit Care Med 45: e1018e1025, 2017 10.1097/CCM.0000000000002568 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Hatamizadeh P, Tolwani A, Palevsky P: Revisiting filtration fraction as an index of the risk of hemofilter clotting in continuous venovenous hemofiltration. Clin J Am Soc Nephrol 15: 16601662, 2020 10.2215/CJN.02410220 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 105.

    Ledoux-Hutchinson L, Wald R, Malbrain MLNG, Carrier FM, Bagshaw SM, Bellomo R, et al.: Fluid management for critically ill patients with acute kidney injury receiving kidney replacement therapy: An international survey. Clin J Am Soc Nephrol 18: 705715, 2023 10.2215/CJN.0000000000000157 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Bitker L, Bayle F, Yonis H, Gobert F, Leray V, Taponnier R, et al.: Prevalence and risk factors of hypotension associated with preload-dependence during intermittent hemodialysis in critically ill patients. Crit Care 20: 44, 2016 10.1186/s13054-016-1227-3 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Douvris A, Zeid K, Hiremath S, Bagshaw SM, Wald R, Beaubien-Souligny W, et al.: Mechanisms for hemodynamic instability related to renal replacement therapy: A narrative review. Intensive Care Med 45: 13331346, 2019 10.1007/s00134-019-05707-w PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Murugan R, Bellomo R, Palevsky PM, Kellum JA: Ultrafiltration in critically ill patients treated with kidney replacement therapy. Nat Rev Nephrol 17: 262276, 2021 10.1038/s41581-020-00358-3 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Murugan R, Kerti SJ, Chang C-CH, Gallagher M, Clermont G, Palevsky PM, et al.: Association of net ultrafiltration rate with mortality among critically ill adults with acute kidney injury receiving continuous venovenous hemodiafiltration: A secondary analysis of the Randomized Evaluation of Normal vs Augmented Level (RENAL) of Renal Replacement Therapy Trial. JAMA Netw Open 2: e195418, 2019 10.1001/jamanetworkopen.2019.5418 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Neyra JA, Lambert J, Ortiz-Soriano V, Cleland D, Colquitt J, Adams P, et al.: Assessment of prescribed vs. achieved fluid balance during continuous renal replacement therapy and mortality outcome. PLoS One 17: e0272913, 2022 10.1371/journal.pone.0272913 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Neyra JA, Mehta RL, Murugan R: Fluid management during continuous renal replacement rherapy: A case-based approach. Nephron 147: 782787, 2023 10.1159/000534395 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Beaubien-Souligny W, Trott T, Neyra JA: How to determine fluid management goals during continuous kidney replacement therapy in patients with AKI: Focus on POCUS. Kidney360 3: 17951806, 2022 10.34067/KID.0002822022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Teixeira JP, Zeidman A, Beaubien-Souligny W, Cerdá J, Connor MJ, Eggleston K, et al.: Proceedings of the 2022 UAB CRRT Academy: Non-invasive hemodynamic monitoring to guide fluid removal with CRRT and proliferation of extracorporeal blood purification devices. Blood Purif 52: 857879, 2023 10.1159/000533573 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Wu V-C, Ko W-J, Chang H-W, Chen Y-W, Lin Y-F, Shiao C-C, National Taiwan University Surgical ICU Acute Renal Failure Study Group (NSARF), et al.: Risk factors of early redialysis after weaning from postoperative acute renal replacement therapy. Intensive Care Med 34: 101108, 2008 10.1007/s00134-007-0813-x PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, et al.: Discontinuation of continuous renal replacement therapy: A post hoc analysis of a prospective multicenter observational study. Crit Care Med 37: 25762582, 2009 10.1097/CCM.0b013e3181a38241 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Jeon J, Kim DH, Baeg SI, Lee EJ, Chung CR, Jeon K, et al.: Association between diuretics and successful discontinuation of continuous renal replacement therapy in critically ill patients with acute kidney injury. Crit Care 22: 255, 2018 10.1186/s13054-018-2192-9 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    Beaubien-Souligny W, Yang Y, Burns KEA, Friedrich JO, Meraz-Muñoz A, Clark EG, et al.: Intra-dialytic hypotension following the transition from continuous to intermittent renal replacement therapy. Ann Intensive Care 11: 96, 2021 10.1186/s13613-021-00885-7 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Katulka RJ, Al Saadon A, Sebastianski M, Featherstone R, Vandermeer B, Silver SA, et al.: Determining the optimal time for liberation from renal replacement therapy in critically ill patients: A systematic review and meta-analysis (DOnE RRT). Crit Care 24: 50, 2020 10.1186/s13054-020-2751-8 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119.

    von Groote T, Albert F, Meersch M, Koch R, Porschen C, Hartmann O, et al.: Proenkephalin A 119-159 predicts early and successful liberation from renal replacement therapy in critically ill patients with acute kidney injury: A post hoc analysis of the ELAIN trial. Crit Care 26: 333, 2022 10.1186/s13054-022-04217-4 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    von Groote T, Albert F, Meersch M, Koch R, Gerss J, Arlt B, RICH investigators, et al.: Evaluation of Proenkephalin A 119-159 for liberation from renal replacement therapy: An external, multicenter pilot study in critically ill patients with acute kidney injury. Crit Care 27: 276, 2023 10.1186/s13054-023-04556-w PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 121.

    Allegretti AS, Endres P, Parris T, Zhao S, May M, Sylvia-Reardon M, et al.: Accelerated venovenous hemofiltration as a transitional renal replacement therapy in the intensive care unit. Am J Nephrol 51: 318326, 2020 10.1159/000506412 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122.

    Akhoundi A, Singh B, Vela M, Chaudhary S, Monaghan M, Wilson GA, et al.: Incidence of adverse events during continuous renal replacement therapy. Blood Purif 39: 333339, 2015 10.1159/000380903 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Griffin BR, Jovanovich A, You Z, Palevsky P, Faubel S, Jalal D: Effects of baseline thrombocytopenia and platelet decrease following renal replacement therapy initiation in patients with severe acute kidney injury. Crit Care Med 47: e325e331, 2019 10.1097/CCM.0000000000003598 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    Griffin BR, Wu C, O’Horo JC, Faubel S, Jalal D, Kashani K: The association of platelet decrease following continuous renal replacement therapy initiation and increased rates of secondary infections. Crit Care Med 49: e130e139, 2021 10.1097/CCM.0000000000004763 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    Griffin BR, Ten Eyck P, Faubel S, Jalal D, Gallagher M, Bellomo R: Platelet decreases following continuous renal replacement therapy initiation as a novel risk factor for renal nonrecovery. Blood Purif 51: 559566, 2022 10.1159/000517232 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Thompson Bastin ML, Stromberg AJ, Nerusu SN, Liu LJ, Mayer KP, Liu KD, et al.: Association of phosphate-containing versus phosphate-free solutions on ventilator days in patients requiring continuous kidney replacement therapy. Clin J Am Soc Nephrol 17: 634642, 2022 10.2215/CJN.12410921 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    Thompson Bastin ML, Adams PM, Nerusu S, Morris PE, Mayer KP, Neyra JA: Association of phosphate containing solutions with incident hypophosphatemia in critically ill patients requiring continuous renal replacement therapy. Blood Purif 51: 122129, 2022 10.1159/000514418 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 128.

    Crowley KE, DeGrado JR, Charytan DM: Serum glucose and phosphorus concentrations during continuous renal replacement therapy using commercial replacement solutions with or without phosphorus. Hemodial Int 24: 330334, 2020 10.1111/hdi.12834 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 129.

    Coutrot M, Hékimian G, Moulin T, Bréchot N, Schmidt M, Besset S, et al.: Euglycemic ketoacidosis, a common and underecognized complication of continuous renal replacement therapy using glucose-free solutions. Intensive Care Med 44: 11851186, 2018 10.1007/s00134-018-5118-8 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    Rewa OG, Tolwani A, Mottes T, Juncos LA, Ronco C, Kashani K, ADQI Consensus Meeting Members on behalf of ADQI XXII, et al.: Quality of care and safety measures of acute renal replacement therapy: Workgroup statements from the 22nd acute disease quality initiative (ADQI) consensus conference. J Crit Care 54: 5257, 2019 10.1016/j.jcrc.2019.07.003 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    Rewa OG, Villeneuve P-M, Lachance P, Eurich DT, Stelfox HT, Gibney RTN, et al.: Quality indicators of continuous renal replacement therapy (CRRT) care in critically ill patients: a systematic review. Intensive Care Med 43: 750763, 2017 10.1007/s00134-016-4579-x PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 132.

    Griffin BR, Thomson A, Yoder M, Francis I, Ambruso S, Bregman A, et al.: Continuous renal replacement therapy dosing in critically ill patients: A quality improvement initiative. Am J Kidney Dis 74: 727735, 2019 10.1053/j.ajkd.2019.06.013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 133.

    Neyra JA, Nadkarni GN: Continuous kidney replacement therapy of the future: Innovations in information technology, data analytics, and quality assurance systems. Adv Chronic Kidney Dis 28: 1319, 2021 10.1053/j.ackd.2021.03.020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 134.

    Neyra JA, Kashani K: Improving the quality of care for patients requiring continuous renal replacement therapy. Semin Dial 34: 501509, 2021 10.1111/sdi.12968 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 135.

    Neyra JA, Goldstein SL: Optimizing renal replacement therapy deliverables through multidisciplinary work in the intensive care unit. Clin Nephrol 90: 15, 2018 10.5414/CN109447 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 136.

    Onichimowski D, Ziółkowski H, Nosek K, Jaroszewski J, Rypulak E, Czuczwar M: Comparison of adsorption of selected antibiotics on the filters in continuous renal replacement therapy circuits: In vitro studies. J Artif Organs 23: 163170, 2020 10.1007/s10047-019-01139-x PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 137.

    Roberts DM, Roberts JA, Roberts MS, Liu X, Nair P, Cole L, RENAL Replacement Therapy Study Investigators, et al.: Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: A multicentre pharmacokinetic study. Crit Care Med 40: 15231528, 2012 10.1097/CCM.0b013e318241e553 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 138.

    Beumier M, Casu GS, Hites M, Seyler L, Cotton F, Vincent J-L, et al.: β-lactam antibiotic concentrations during continuous renal replacement therapy. Crit Care 18: R105, 2014 10.1186/cc13886 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 139.

    Lewis SJ, Mueller BA: Antibiotic dosing in patients with acute kidney injury: “Enough but not too much.” J Intensive Care Med 31: 164176, 2016 10.1177/0885066614555490 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 140.

    Behal ML, Flannery AH, Barreto EF: Medication management in the critically ill patient with acute kidney injury. Clin J Am Soc Nephrol 18: 10801088, 2023 10.2215/CJN.0000000000000101 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Teixeira JP, Mayer KP, Griffin BR, George N, Jenkins N, Pal CA, et al.: Intensive care unit-acquired weakness in patients with acute kidney injury: A contemporary review. Am J Kidney Dis 81: 336351, 2023 10.1053/j.ajkd.2022.08.028 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    Teixeira JP, Griffin BR, Pal CA, González-Seguel F, Jenkins N, Jones BM, et al.: Critical illness myopathy and trajectory of recovery in acute kidney injury requiring continuous renal replacement therapy: A prospective observational trial protocol. BMJ Open 13: e072448, 2023 10.1136/bmjopen-2023-072448 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, American Society for Parenteral and Enteral Nutrition, et al.: Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr 40: 159211, 2016 10.1177/0148607115621863 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    Raurell-Torredà M, Arias-Rivera S, Martí JD, Frade-Mera MJ, Zaragoza-García I, Gallart E, MOviPre group, et al.: Care and treatments related to intensive care unit-acquired muscle weakness: A cohort study. Aust Crit Care 34: 435445, 2021 10.1016/j.aucc.2020.12.005 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Mayer KP, Ortiz-Soriano VM, Kalantar A, Lambert J, Morris PE, Neyra JA: Acute kidney injury contributes to worse physical and quality of life outcomes in survivors of critical illness. BMC Nephrol 23: 137, 2022 10.1186/s12882-022-02749-z PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 146.

    Mayer KP, Joseph-Isang E, Robinson LE, Parry SM, Morris PE, Neyra JA: Safety and feasibility of physical rehabilitation and active mobilization in patients requiring continuous renal replacement therapy: A systematic review. Crit Care Med 48: e1112e1120, 2020 10.1097/CCM.0000000000004526 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Mayer KP, Hornsby AR, Soriano VO, Lin TC, Cunningham JT, Yuan H, et al.: Safety, feasibility, and efficacy of early rehabilitation in patients requiring continuous renal replacement: A quality improvement study. Kidney Int Rep 5: 3947, 2020 10.1016/j.ekir.2019.10.003 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 148.

    Yessayan LT, Szamosfalvi B, Rosner MH: Management of dysnatremias with continuous renal replacement therapy. Semin Dial 34: 472479, 2021 10.1111/sdi.12983 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 388 388 388
Full Text Views 66 66 66
PDF Downloads 90 90 90