Pediatric Acute Kidney Injury: An Overview and Examination of Recent Evidence
By:
Katherine Jones Department of Pediatrics, Tripler Army Medical Center, Honolulu, Hawaii
Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland

Search for other papers by Katherine Jones in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1.

    Khwaja A: KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 120: c179c184, 2012 PubMed

  • 2.

    Mian AN, Schwartz GJ: Measurement and estimation of glomerular filtration rate in children. Adv Chronic Kidney Dis 24: 348356, 2017 PubMed

  • 3.

    Moran SM, Myers BD: Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int 27: 928937, 1985 PubMed

  • 4.

    Goldstein SL: Urine output assessment in acute kidney injury: The cheapest and most impactful biomarker. Front Pediatr 7: 565, 2020 PubMed

  • 5.

    Krawczeski CD, Vandevoorde RG, Kathman T, Bennett MR, Woo JG, Wang Y, et al.: Serum cystatin C is an early predictive biomarker of acute kidney injury after pediatric cardiopulmonary bypass. Clin J Am Soc Nephrol 5: 15521557, 2010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, Devarajan P, et al.: Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: A prospective cohort study. Crit Care 11: R84, 2007 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Wheeler DS, Devarajan P, Ma Q, Harmon K, Monaco M, Cvijanovich N, et al.: Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med 36: 12971303, 2008 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Pan H-C, Yang SY, Chiou TT, Shiao CC, Wu CH, Huang CT, et al.: Comparative accuracy of biomarkers for the prediction of hospital-acquired acute kidney injury: A systematic review and meta-analysis. Crit Care 26: 349, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Dong L, Ma Q, Bennett M, Devarajan P: Urinary biomarkers of cell cycle arrest are delayed predictors of acute kidney injury after pediatric cardiopulmonary bypass. Pediatr Nephrol 32: 23512360, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Gist KM, Goldstein SL, Wrona J, Alten JA, Basu RK, Cooper DS, et al.: Kinetics of the cell cycle arrest biomarkers (TIMP-2*IGFBP-7) for prediction of acute kidney injury in infants after cardiac surgery. Pediatr Nephrol 32: 16111619, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Meena J, Thomas CC, Kumar J, Mathew G, Bagga A: Biomarkers for prediction of acute kidney injury in pediatric patients: A systematic review and meta-analysis of diagnostic test accuracy studies. Pediatr Nephrol 38: 32413251, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gist KM, Fuhrman D, Stanski N, Menon S, Soranno DE: Subphenotypes of acute kidney injury in children. Curr Opin Crit Care 28: 590598, 2022 PubMed

  • 13.

    Meena J, Mathew G, Kumar J, Chanchlani R: Incidence of acute kidney injury in hospitalized children: A meta-analysis. Pediatrics 151: e2022058823, 2023 PubMed

  • 14.

    Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL; AWARE Investigators: Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med 376: 1120, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Xu X, Nie S, Zhang A, Jianhua M, Liu HP, Xia H, et al.: A new criterion for pediatric AKI based on the reference change value of serum creatinine. J Am Soc Nephrol 29: 24322442, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Jetton JG, Askenazi DJ: Update on acute kidney injury in the neonate. Curr Opin Pediatr 24: 191196, 2012 PubMed

  • 17.

    Carmody JB, Swanson JR, Rhone ET, Charlton JR: Recognition and reporting of AKI in very low birth weight infants. Clin J Am Soc Nephrol 9: 20362043, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Jetton JG, Boohaker LJ, Sethi SK, Wazir S, Rohatgi S, Soranno DE, et al.; Neonatal Kidney Collaborative (NKC): Incidence and outcomes of neonatal acute kidney injury (AWAKEN): A multicentre, multinational, observational cohort study. Lancet Child Adolesc Health 1: 184194, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Charlton JR, Boohaker L, Askenazi D, Brophy PD, D’Angio C, Fuloria M, et al.; Neonatal Kidney Collaborative: Incidence and risk factors of early onset neonatal AKI. Clin J Am Soc Nephrol 14: 184195, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Alten JA, Cooper DS, Blinder JJ, Selewski DT, Tabbutt S, Sasaki J, et al.; Neonatal and Pediatric Heart and Renal Outcomes Network (NEPHRON) Investigators: Epidemiology of acute kidney injury after neonatal cardiac surgery: A report from the multicenter neonatal and pediatric heart and renal outcomes network. Crit Care Med 49: e941e951, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Goldstein SL, Mottes T, Simpson K, Barclay C, Muething S, Haslam DB, et al.: A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int 90: 212221, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Stoops C, Stone S, Evans E, Dill L, Henderson T, Griffin R, et al.: Baby NINJA (Nephrotoxic Injury Negated by Just-in-Time Action): Reduction of nephrotoxic medication-associated acute kidney injury in the neonatal intensive care unit. J Pediatr 215: 223228.e6, 2019

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Goldstein SL, Dahale D, Kirkendall ES, Mottes T, Kaplan H, Muething S, et al.: A prospective multi-center quality improvement initiative (NINJA) indicates a reduction in nephrotoxic acute kidney injury in hospitalized children. Kidney Int 97: 580588, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Davenport MS, Perazella MA, Yee J, Dillman JR, Fine D, McDonald RJ, et al.: Use of intravenous iodinated contrast media in patients with kidney disease: Consensus statements from the American College of Radiology and the National Kidney Foundation. Radiology 294: 660668, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Gilligan LA, Davenport MS, Trout AT, Su W, Zhang B, Goldstein SL, et al.: Risk of acute kidney injury following contrast-enhanced CT in hospitalized pediatric patients: A propensity score analysis. Radiology 294: 548556, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Calle-Toro J, Viteri B, Ballester L, García-Perdomo HA, White A, Pradhan M, et al.: Risk of acute kidney injury following contrast-enhanced CT in a cohort of 10 407 children and adolescents. Radiology 307: e210816, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Raina R, Sethi SK, Wadhwani N, Vemuganti M, Krishnappa V, Bansal SB: Fluid overload in critically ill children. Front Pediatr 6: 306, 2018 PubMed

  • 28.

    Lima L, Menon S, Goldstein SL, Basu RK: Timing of fluid overload and association with patient outcome. Pediatr Crit Care Med 22: 114124, 2021 PubMed

  • 29.

    Modem V, Thompson M, Gollhofer D, Dhar AV, Quigley R: Timing of continuous renal replacement therapy and mortality in critically ill children. Crit Care Med 42: 943953, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Cortina G, McRae R, Hoq M, Donath S, Chiletti R, Arvandi M, et al.: Mortality of critically ill children requiring continuous renal replacement therapy: Effect of fluid overload, underlying disease, and timing of initiation. Pediatr Crit Care Med 20: 314322, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Gist KM, Selewski DT, Brinton J, Menon S, Goldstein SL, Basu RK: Assessment of the independent and synergistic effects of fluid overload and acute kidney injury on outcomes of critically ill children. Pediatr Crit Care Med 21: 170177, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Basu RK, Andrews A, Krawczeski C, Manning P, Wheeler DS, Goldstein SL: Acute kidney injury based on corrected serum creatinine is associated with increased morbidity in children following the arterial switch operation. Pediatr Crit Care Med 14: e218e224, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Walsh PR, Johnson S: Eculizumab in the treatment of Shiga toxin haemolytic uraemic syndrome. Pediatr Nephrol 34: 14851492, 2019 PubMed

  • 34.

    Freedman SB, van de Kar NCAJ, Tarr PI: Shiga toxin-producing Escherichia coli and the hemolytic-uremic syndrome. N Engl J Med 389: 14021414, 2023 PubMed

  • 35.

    Menne J, Nitschke M, Stingele R, Abu-Tair M, Beneke J, Bramstedt J, et al.; EHEC-HUS consortium: Validation of treatment strategies for enterohaemorrhagic Escherichia coli O104:H4 induced haemolytic uraemic syndrome: Case-control study. BMJ 345: e4565, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Monet-Didailler C, Chevallier A, Godron-Dubrasquet A, Allard L, Delmas Y, Contin-Bordes C, et al.: Outcome of children with Shiga toxin-associated haemolytic uraemic syndrome treated with eculizumab: A matched cohort study. Nephrol Dial Transplant 35: 21472153, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Garnier A, Brochard K, Kwon T, Sellier-Leclerc AL, Lahoche A, Launay EA, et al.: Efficacy and safety of eculizumab in pediatric patients affected by Shiga toxin-related Hemolytic and uremic syndrome: A randomized, placebo-controlled trial. J Am Soc Nephrol 34: 15611573, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Menon S, Broderick J, Munshi R, Dill L, DePaoli B, Fathallah-Shaykh S, et al.: Kidney support in children using an ultrafiltration device: A multicenter, retrospective study. Clin J Am Soc Nephrol 14: 14321440, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Goldstein SL, Vidal E, Ricci Z, Paglialonga F, Peruzzi L, Giordano M, et al.: Survival of infants treated with CKRT: Comparing adapted adult platforms with the Carpediem™. Pediatr Nephrol 37: 667675, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Garzotto F, Vidal E, Ricci Z, Paglialonga F, Giordano M, Laforgia N, et al.: Continuous kidney replacement therapy in critically ill neonates and infants: A retrospective analysis of clinical results with a dedicated device. Pediatr Nephrol 35: 16991705, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Vidal E, Cocchi E, Paglialonga F, Ricci Z, Garzotto F, Peruzzi L, et al.: Continuous veno-venous hemodialysis using the cardio-renal pediatric dialysis emergency MachineTM: First clinical experiences. Blood Purif 47: 149155, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Coulthard MG, Crosier J, Griffiths C, Smith J, Drinnan M, Whitaker M, et al.: Haemodialysing babies weighing <8 kg with the Newcastle infant dialysis and ultrafiltration system (Nidus): Comparison with peritoneal and conventional haemodialysis. Pediatr Nephrol 29: 18731881, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Imani PD, Carpenter JL, Bell CS, Brandt ML, Braun MC, Swartz SJ: Peritoneal dialysis catheter outcomes in infants initiating peritoneal dialysis for end-stage renal disease. BMC Nephrol 19: 231, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Lambert H, Hiu S, Coulthard MG, Matthews JNS, Holstein EM, Crosier J, et al.: The Infant KIdney Dialysis and Utrafiltration (I-KID) study: A stepped-wedge cluster-randomized study in infants, comparing peritoneal dialysis, continuous venovenous hemofiltration, and Newcastle infant dialysis ultrafiltration system, a novel infant hemodialysis device. Pediatr Crit Care Med 24: 604613, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Raina R, Nada A, Shah R, Aly H, Kadatane S, Abitbol C, et al.: Artificial intelligence in early detection and prediction of pediatric/neonatal acute kidney injury: Current status and future directions [published online ahead of print Oct 27, 2023]. Pediatr Nephrol doi:10.1007/s00467-023-06191-72023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Dong J, Feng T, Thapa-Chhetry B, Cho BG, Shum T, Inwald DP, et al.: Machine learning model for early prediction of acute kidney injury (AKI) in pediatric critical care. Crit Care 25: 288, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Zeng X, Shi S, Sun Y, Feng Y, Tan L, Lin R, et al.: A time-aware attention model for prediction of acute kidney injury after pediatric cardiac surgery. J Am Med Inform Assoc 30: 94102, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Hayward A, Robertson A, Thiruchelvam T, Broadhead M, Tsang VT, Sebire NJ, et al.: Oxygen delivery in pediatric cardiac surgery and its association with acute kidney injury using machine learning. J Thorac Cardiovasc Surg 165: 15051516, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Basu RK, Zappitelli M, Brunner L, Wang Y, Wong HR, Chawla LS, et al.: Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int 85: 659667, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Basu RK, Kaddourah A, Goldstein SL; AWARE Study Investigators: Assessment of a renal angina index for prediction of severe acute kidney injury in critically ill children: A multicentre, multinational, prospective observational study. Lancet Child Adolesc Health 2: 112120, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Ribeiro-Mourão F, Vaz AC, Azevedo A, Pinto H, Silva MJ, Jardim J, et al.: Assessment of the renal angina index for the prediction of acute kidney injury in patients admitted to a European pediatric intensive care unit. Pediatr Nephrol 36: 39934001, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 4641 4641 472
Full Text Views 75 75 7
PDF Downloads 104 104 11