Genetic, Hereditary, and Congenital Conditions
By:
Shaarav A. Ghose Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio

Search for other papers by Shaarav A. Ghose in
Current site
Google Scholar
PubMed
Close
and
Sidharth Kumar Sethi Pediatric Nephrology, Medanta–The Medicity, Gurgaon, India

Search for other papers by Sidharth Kumar Sethi in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1.

    Bianic F, Guelfucci F, Robin L, Martre C, Game D, Bockenhauer D: Epidemiology of distal renal tubular acidosis: A study using linked UK primary care and hospital data. Nephron 145: 486495, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Popp B, Ekici AB, Knaup KX, Schneider K, Uebe S, Park J, et al.: Prevalence of hereditary tubulointerstitial kidney diseases in the German Chronic Kidney Disease study. Eur J Hum Genet 30: 14131422, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Downie ML, Lopez Garcia SC, Kleta R, Bockenhauer D: Inherited tubulopathies of the kidney: Insights from genetics. Clin J Am Soc Nephrol 16: 620630, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Kleta R, Bockenhauer D: Salt-losing tubulopathies in children: What’s new, what’s controversial? J Am Soc Nephrol 29: 727739, 2018 PubMed

  • 5.

    Palmer BF, Kelepouris E, Clegg DJ: Renal tubular acidosis and management strategies: A narrative review. Adv Ther 38: 949968, 2021 PubMed

  • 6.

    Palmer BF, Clegg DJ: Hyperchloremic normal gap metabolic acidosis. Minerva Endocrinol 44: 363377, 2019 PubMed

  • 7.

    Bagga A, Sinha A: Renal tubular acidosis. Indian J Pediatr 87: 733744, 2020 PubMed

  • 8.

    Wesson DE, Mathur V, Tangri N, Stasiv Y, Parsell D, Li E, et al.: Long-term safety and efficacy of veverimer in patients with metabolic acidosis in chronic kidney disease: A multicentre, randomised, blinded, placebo-controlled, 40-week extension. Lancet 394: 396406, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Foreman JW: Fanconi syndrome. Pediatr Clin North Am 66: 159167, 2019 PubMed

  • 10.

    Chaudhry HS, Anilkumar AC: Wilson disease, 2023. Available at: http://www.ncbi.nlm.nih.gov/books/NBK441990/. Accessed January 29, 2024

    • PubMed
    • Export Citation
  • 11.

    Soares RB, Bhat N: Dent disease type 1: A diagnostic dilemma and review. Cureus 14: e23910, 2022 PubMed

  • 12.

    Keefe P, Bokhari SRA: Fanconi syndrome, 2023. Available at: http://www.ncbi.nlm.nih.gov/books/NBK534872/. Accessed January 15, 2024

    • PubMed
    • Export Citation
  • 13.

    Bokhari SRA, Zulfiqar H, Mansur A: Bartter syndrome, 2023. Available at: http://www.ncbi.nlm.nih.gov/books/NBK442019/. Accessed January 12, 2024

    • PubMed
    • Export Citation
  • 14.

    Mrad FCC, Soares SBM, de Menezes Silva LAW, Dos Anjos Menezes PV, Simões-E-Silva AC: Bartter’s syndrome: Clinical findings, genetic causes and therapeutic approach. World J Pediatr 17: 3139, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Song W, Hu Y, Zhao L, Zhang J, Zhang Y, Wen J: Molecular complexity analysis of the diagnosis of Gitelman syndrome in China. Open Life Sci 18: 20220634, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Parmar MS, Muppidi V, Bashir K: Gitelman syndrome, 2023. Available at: http://www.ncbi.nlm.nih.gov/books/NBK459304/. Accessed January 13, 2024

    • PubMed
    • Export Citation
  • 17.

    Afzal M, Kathuria P: Familial hypocalciuric hypercalcemia, 2023. Available at: http://www.ncbi.nlm.nih.gov/books/NBK459190/. Accessed January 16, 2024

    • PubMed
    • Export Citation
  • 18.

    Sadacharan D, Mahadevan S, Rao SS, Kumar AP, Swathi S, Kumar S, et al.: Neonatal severe primary hyperparathyroidism: A series of four cases and their long-term management in India. Indian J Endocrinol Metab 24: 196201, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Teleanu RI, Sarman MA, Epure DA, Matei M, Roşca I, Roza E: Autosomal dominant hypocalcemia type 1 and neonatal focal seizures. Children (Basel) 10: 1011, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lenherr-Taube N, Young EJ, Furman M, Elia Y, Assor E, Chitayat D, et al.: Mild idiopathic infantile hypercalcemia: 1. Biochemical and genetic findings. J Clin Endocrinol Metab 106: 29152937, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Charoenngam N, Nasr A, Shirvani A, Holick MF: Hereditary metabolic bone diseases: A review of pathogenesis, diagnosis and management. Genes (Basel) 13: 1880, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Fukumoto S: FGF23-related hypophosphatemic rickets/osteomalacia: Diagnosis and new treatment. J Mol Endocrinol 66: R57R65, 2021 PubMed

  • 23.

    Stürznickel J, Heider F, Delsmann A, Gödel M, Grünhagen J, Huber TB, et al.: Clinical spectrum of hereditary hypophosphatemic rickets with hypercalciuria (HHRH). J Bone Miner Res 37: 15801591, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Holbrook L, Brady R: McCune-Albright syndrome, 2023. Available at: http://www.ncbi.nlm.nih.gov/books/NBK537092/. Accessed January 16, 2024

    • PubMed
    • Export Citation
  • 25.

    Bennati G, Cirino M, Benericetti G, Maximova N, Zanier M, Pigato F, et al.: Compounded effervescent magnesium for familial hypomagnesemia: A case report. Pharmaceuticals (Basel) 16: 785, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Han Y, Zhao Y, Wang H, Huo L: Case report: Novel TRPM6 mutations cause hereditary hypomagnesemia with secondary hypocalcemia in a Chinese family and a literature review. Front Pediatr 10: 912524, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Claverie-Martin F, Perdomo-Ramirez A, Garcia-Nieto V: Hereditary kidney diseases associated with hypomagnesemia. Kidney Res Clin Pract 40: 512526, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Tseng MH, Yang SS, Sung CC, Ding JJ, Hsu YJ, Chu SM, et al.: Novel CNNM2 mutation responsible for autosomal-dominant hypomagnesemia with seizure. Front Genet 13: 875013, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Konrad M, Schlingmann KP: Inherited disorders of renal hypomagnesaemia. Nephrol Dial Transplant 29[Suppl 4]: iv63iv71, 2014 PubMed

  • 30.

    Kołbuc M, Leßmeier L, Salamon-Słowińska D, Małecka I, Pawlaczyk K, Walkowiak J, et al.: Hypomagnesemia is underestimated in children with HNF1B mutations. Pediatr Nephrol 35: 18771886, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Kavanagh C, Uy NS: Nephrogenic diabetes insipidus. Pediatr Clin North Am 66: 227234, 2019 PubMed

  • 32.

    Angelousi A, Alexandraki KI, Mytareli C, Grossman AB, Kaltsas G: New developments and concepts in the diagnosis and management of diabetes insipidus (AVP-deficiency and resistance). J Neuroendocrinol 35: e13233, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Duicu C, Pitea AM, Săsăran OM, Cozea I, Man L, Bănescu C: Nephrogenic diabetes insipidus in children (review). Exp Ther Med 22: 746, 2021 PubMed

  • 34.

    Tetti M, Monticone S, Burrello J, Matarazzo P, Veglio F, Pasini B, et al.: Liddle syndrome: Review of the literature and description of a new case. Int J Mol Sci 19: 812, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Enslow BT, Stockand JD, Berman JM: Liddle’s syndrome mechanisms, diagnosis and management. Integr Blood Press Control 12: 1322, 2019 PubMed

  • 36.

    Mubarik A, Anastasopoulou C, Riahi S, Aeddula NR: Liddle syndrome, 2023. Available at: http://www.ncbi.nlm.nih.gov/books/NBK536911/. Accessed December 22, 2023

    • PubMed
    • Export Citation
  • 37.

    Adachi M, Tajima T, Muroya K: Dietary potassium restriction attenuates urinary sodium wasting in the generalized form of pseudohypoaldosteronism type 1. CEN Case Rep 9: 133137, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Fujioka K, Nakasone R, Nishida K, Ashina M, Sato I, Nozu K: Neonatal Pseudohypoaldosteronism Type-1 in Japan. J Clin Med 11: 5135, 2022 PubMed

  • 39.

    Nanda PM, Sharma R, Jain V: Successful management of systemic pseudohypoaldosteronism type 1 in an infant. Indian Pediatr 60: 149150, 2023 PubMed

  • 40.

    Peces R, Peces C, Espinosa L, Mena R, Blanco C, Tenorio-Castaño J, et al.: A Spanish family with Gordon syndrome due to a variant in the acidic motif of WNK1. Genes (Basel) 14: 1878, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Mabillard H, Sayer JA: The molecular genetics of Gordon syndrome. Genes (Basel) 10: 986, 2019 PubMed

  • 42.

    Suzumoto Y, Columbano V, Gervasi L, Giunta R, Mattina T, Trimarchi G, et al.: A case series of adult patients affected by EAST/SeSAME syndrome suggests more severe disease in subjects bearing KCNJ10 truncating mutations. Intractable Rare Dis Res 10: 95101, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Guo W, Ji P, Xie Y: Genetic diagnosis and treatment of hereditary renal tubular disease with hypokalemia and alkalosis. J Nephrol 36: 575591, 2023 PubMed

  • 44.

    Li S, Yang Y, Huang L, Kong M, Yang Z: A novel compound heterozygous mutation in SLC5A2 contributes to familial renal glucosuria in a Chinese family, and a review of the relevant literature. Mol Med Rep 19: 43644376, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Van Lerberghe R, Mahieu E, Vanuytsel J, Vanhaute K, Vanfraechem C, Claeys L: Familial renal glucosuria presenting as paroxysmal glucosuria and hypercalciuria due to a novel SLC5A2 heterozygous variant. Eur J Case Rep Intern Med 10: 004157, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Dorum S, Erdoğan H, Köksoy AY, Topak A, Görükmez Ö: Clinical features of pediatric renal glucosuria cases due to SLC5A2 gene variants. Pediatr Int (Roma) 64: e14948, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Hatano M, Udagawa T, Kanamori T, Sutani A, Mori T, Sohara E, et al.: A novel SLC5A2 heterozygous variant in a family with familial renal glucosuria. Hum Genome Var 9: 42, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Hoppe B, Martin-Higueras C: Improving treatment options for primary hyperoxaluria. Drugs 82: 10771094, 2022 PubMed

  • 49.

    Demoulin N, Aydin S, Gillion V, Morelle J, Jadoul M: Pathophysiology and management of hyperoxaluria and oxalate nephropathy: A review. Am J Kidney Dis 79: 717727, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Lorenzo V, Torres A, Salido E: Primary hyperoxaluria. Nefrologia 34: 398412, 2014 PubMed

  • 51.

    Groothoff JW, Metry E, Deesker L, Garrelfs S, Acquaviva C, Almardini R, et al.: Clinical practice recommendations for primary hyperoxaluria: an expert consensus statement from ERKNet and OxalEurope. Nat Rev Nephrol 19: 194211, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Topaloglu R: Nephropathic cystinosis: An update on genetic conditioning. Pediatr Nephrol 36: 13471352, 2021 PubMed

  • 53.

    Elmonem MA, Veys KRP, Prencipe G: Nephropathic cystinosis: Pathogenic roles of inflammation and potential for new therapies. Cells 11: 190, 2022 PubMed

  • 54.

    Esposito P, Caputo C, Repetto M, Somaschini A, Pietro B, Colomba P, et al.: Diagnosing Fabry nephropathy: The challenge of multiple kidney disease. BMC Nephrol 24: 344, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Chimenz R, Chirico V, Cuppari C, Ceravolo G, Concolino D, Monardo P, et al.: Fabry disease and kidney involvement: starting from childhood to understand the future. Pediatr Nephrol 37: 95103, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Vedder AC, Linthorst GE, van Breemen MJ, Groener JE, Bemelman FJ, Strijland A, et al.: The Dutch Fabry cohort: Diversity of clinical manifestations and Gb3 levels. J Inherit Metab Dis 30: 6878, 2007 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Pisani A, Visciano B, Imbriaco M, Di Nuzzi A, Mancini A, Marchetiello C, et al.: The kidney in Fabry’s disease. Clin Genet 86: 301309, 2014 PubMed

  • 58.

    Ishii S, Chang HH, Kawasaki K, Yasuda K, Wu HL, Garman SC, et al.: Mutant α-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: Biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochem J 406: 285295, 2007 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1820 1820 130
Full Text Views 194 194 31
PDF Downloads 257 257 37