Pediatric Glomerular Disease
By:
Eugene Yu-hin Chan Paediatric Nephrology Centre, Hong Kong Children’s Hospital, Hong Kong Department of Paediatrics, Chinese University of Hong Kong, Shatin, Hong Kong SAR

Search for other papers by Eugene Yu-hin Chan in
Current site
Google Scholar
PubMed
Close
,
Olivia Boyer Néphrologie Pédiatrique, Centre de Référence du syndrome néphrotique idiopathique de l’enfant et l’adulte, Hôpital Necker - Enfants Malades, Assistance Publique – Hôpitaux de Paris, Inserm U1163, Institut Imagine, Université Paris Cité, Paris, France

Search for other papers by Olivia Boyer in
Current site
Google Scholar
PubMed
Close
, and
Kjell Tullus Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, London, United Kingdom

Search for other papers by Kjell Tullus in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1.

    Ingelfinger JR, Schaefer F, Kalantar-Zadeh K: Averting the legacy of kidney disease-focus on childhood. Kidney Int 89: 512518, 2016 PubMed

  • 2.

    O’Shaughnessy MM, Hogan SL, Poulton CJ, Falk RJ, Singh HK, Nickeleit V, et al.: Temporal and demographic trends in glomerular disease epidemiology in the southeastern United States, 1986–2015. Clin J Am Soc Nephrol 12: 614623, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    O’Shaughnessy MM, Hogan SL, Thompson BD, Coppo R, Fogo AB, Jennette JC: Glomerular disease frequencies by race, sex and region: Results from the International Kidney Biopsy Survey. Nephrol Dial Transplant 33: 661669, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Gipson DS, Troost JP, Lafayette RA, Hladunewich MA, Trachtman H, Gadegbeku CA, et al.: Complete remission in the nephrotic syndrome study network. Clin J Am Soc Nephrol 11: 8189, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Trautmann A, Vivarelli M, Samuel S, Gipson D, Sinha A, Schaefer F, et al.: IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 35: 15291561, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Mason AE, Sen ES, Bierzynska A, Colby E, Afzal M, Dorval G, et al.: Response to first course of intensified immunosuppression in genetically stratified steroid resistant nephrotic syndrome. Clin J Am Soc Nephrol 15: 983994, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Tullus K: Why FSGS keeps being presented as a disease although it is not. Nephrol Dial Transplant 38: 24262427, 2023 PubMed

  • 8.

    Veltkamp F, Rensma LR, Bouts AH: Incidence and relapse of idiopathic nephrotic syndrome: meta-analysis. Pediatrics 148: e2020029249, 2021 PubMed

  • 9.

    Veltkamp F, Thenot V, Mussies C, van Lieshout B, Peters-Sengers H, Kers J, et al.: Incidence of idiopathic nephrotic syndrome during the Covid-19 pandemic in the Paris area (France) and in the Netherlands. Pediatr Nephrol 38: 36813692, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Watts AJ, Keller KH, Lerner G, Rosales I, Collins AB, Sekulic M, et al.: Discovery of autoantibodies targeting nephrin in minimal change disease supports a novel autoimmune etiology. J Am Soc Nephrol 33: 238252, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Vivarelli M, Gibson K, Sinha A, Boyer O: Childhood nephrotic syndrome. Lancet 402: 809824, 2023 PubMed

  • 12.

    Barry A, McNulty MT, Jia X, Gupta Y, Debiec H, Luo Y, et al.: Multi-population genome-wide association study implicates immune and non-immune factors in pediatric steroid-sensitive nephrotic syndrome. Nat Commun 14: 2481, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Dorval G, Servais A, Boyer O: The genetics of steroid-resistant nephrotic syndrome in children. Nephrol Dial Transplant 37: 648651, 2022 PubMed

  • 14.

    Dorval G, Kuzmuk V, Gribouval O, Welsh GI, Bierzynska A, Schmitt A, et al.: TBC1D8B loss-of-function mutations lead to X-linked nephrotic syndrome via defective trafficking pathways. Am J Hum Genet 104: 348355, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Rovin BH, Adler SG, Barratt J, Bridoux F, Burdge KA, Chan TM, et al.: Executive summary of the KDIGO 2021 guideline for the management of glomerular diseases. Kidney Int 100: 753779, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Trautmann A, Boyer O, Hodson E, Bagga A, Gipson DS, Samuel S, et al.: IPNA clinical practice recommendations for the diagnosis and management of children with steroid-sensitive nephrotic syndrome. Pediatr Nephrol 38: 877919, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gargiulo A, Massella L, Ruggiero B, Ravà L, Degli Atti MC, Materassi M, et al.: Results of the PROPINE randomized controlled study suggest tapering of prednisone treatment for relapses of steroid sensitive nephrotic syndrome is not necessary in children. Kidney Int 99: 475483, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kainth D, Hari P, Sinha A, Pandey S, Bagga A: Short-duration prednisolone in children with nephrotic syndrome relapse: A noninferiority randomized controlled trial. Clin J Am Soc Nephrol 16: 225232, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Christian MT, Webb NJ, Mehta S, Woolley RL, Afentou N, Frew E, et al.: Evaluation of daily low-dose prednisolone during upper respiratory tract infection to prevent relapse in children with relapsing steroid-sensitive nephrotic syndrome: The PREDNOS 2 randomized clinical trial. JAMA Pediatr 176: 236243, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Sinha A, Devi KG, Kalra S, Kalaivani M, Hari P, Bagga A: An open label non-inferiority RCT evaluated alternate day prednisolone given daily during infections vs. levamisole in frequently relapsing nephrotic syndrome. Kidney Int 105: 1113–1123, 2024

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Iijima K, Sako M, Oba M, Tanaka S, Hamada R, Sakai T, et al.: Mycophenolate mofetil after rituximab for childhood-onset complicated frequently-relapsing or steroid-dependent nephrotic syndrome. J Am Soc Nephrol 33: 401419, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Chan EY, Webb H, Yu E, Ghiggeri GM, Kemper MJ, Ma AL, et al.: Both the rituximab dose and maintenance immunosuppression in steroid-dependent/frequently-relapsing nephrotic syndrome have important effects on outcomes. Kidney Int 97: 393401, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Sinha A, Mathew G, Arushi A, Govindarajan S, Ghanapriya K, Grewal N, et al.: Sequential rituximab therapy sustains remission of nephrotic syndrome but carries high risk of adverse effects. Nephrol Dial Transplant 38: 939949, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Chan EY, Ellen L, Angeletti A, Arslan Z, Basu B, Boyer O, et al.: Long-term efficacy and safety of repeated rituximab to maintain remission in idiopathic childhood nephrotic syndrome: an international study. J Am Soc Nephrol 33: 11931207, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Chan EY, Tullus K: Rituximab in children with steroid sensitive nephrotic syndrome: in quest of the optimal regimen. Pediatr Nephrol 36: 13971405, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Chan EY, Ma AL, Tullus K: Hypogammaglobulinaemia following rituximab therapy in childhood nephrotic syndrome. Pediatr Nephrol 37: 927931, 2022 PubMed

  • 27.

    Trautmann A, Seide S, Lipska-Ziętkiewicz BS, Ozaltin F, Szczepanska M, Azocar M, et al.: Outcomes of steroid-resistant nephrotic syndrome in children not treated with intensified immunosuppression. Pediatr Nephrol 38: 14991511, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Malakasioti G, Iancu D, Milovanova A, Tsygin A, Horinouchi T, Nozu K, et al.: A multicenter retrospective study of calcineurin inhibitors in nephrotic syndrome secondary to podocyte gene variants. Kidney Int 103: 962972, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Drovandi S, Lipska-Ziętkiewicz BS, Ozaltin F, Emma F, Gulhan B, Boyer O, et al.: Oral Coenzyme Q10 supplementation leads to better preservation of kidney function in steroid-resistant nephrotic syndrome due to primary Coenzyme Q10 deficiency. Kidney Int 102: 604612, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Egbuna O, Zimmerman B, Manos G, Fortier A, Chirieac MC, Dakin LA, et al.: Inaxaplin for proteinuric kidney disease in persons with two APOL1 variants. N Engl J Med 388: 969979, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Morello W, Proverbio E, Puccio G, Montini G: A systematic review and meta-analysis of the rate and risk factors for post-transplant disease recurrence in children with steroid resistant nephrotic syndrome. Kidney Int Rep 8: 254264, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ding WY, Koziell A, McCarthy HJ, Bierzynska A, Bhagavatula MK, Dudley JA, et al.: Initial steroid sensitivity in children with steroid-resistant nephrotic syndrome predicts post-transplant recurrence. J Am Soc Nephrol 25: 13421348, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Chan EY, Lai FF, Ma AL, Chan TM: Managing lupus nephritis in children and adolescents., Pediatr Drugs 26: 145161, 2023 PubMed

  • 34.

    Wenderfer SE, Chang JC, Davies AG, Luna IY, Scobell R, Sears C, et al.: Using a multi-institutional pediatric learning health system to identify systemic lupus erythematosus and lupus nephritis: Development and validation of computable phenotypes. Clin J Am Soc Nephrol 17: 6574, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Chan EY, Yap DY, Wong W, Wong WH, Wong S, Lin KY, et al.: Long-term outcomes of children and adolescents with biopsy-proven childhood-onset lupus nephritis. Kidney Int Rep 8: 141150, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Chan EY, Yap DY, Wong WH, Wong S, Lin KY, Hui FY, et al.: Renal relapse in children and adolescents with childhood-onset lupus nephritis: a 20-year study. Rheumatology (Oxford) 63: 953961, 2024 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Groot N, De Graeff N, Marks SD, Brogan P, Avcin T, Bader-Meunier B, et al.: European evidence-based recommendations for the diagnosis and treatment of childhood-onset lupus nephritis: the SHARE initiative. Ann Rheum Dis 76: 19651973, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Rovin BH, Adler SG, Barratt J, Bridoux F, Burdge KA, Chan TM, et al.: KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int 100: S1S276, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    De Mutiis C, Wenderfer SE, Orjuela A, Bagga A, Basu B, Sar T, et al.: Defining renal remission in an international cohort of 248 children and adolescents with lupus nephritis. Rheumatology (Oxford) 61: 25632571, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Aragon E, Resontoc L, Chan Y, Lau Y, Tan P, Loh H, et al.: Long-term outcomes with multi-targeted immunosuppressive protocol in children with severe proliferative lupus nephritis. Lupus 25: 399406, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Smith EMD, Aggarwal A, Ainsworth J, Al-Abadi E, Avcin T, Bortey L, et al.: Towards development of treat to target (T2T) in childhood-onset systemic lupus erythematosus: PReS-endorsed overarching principles and points-to-consider from an international task force. Ann Rheum Dis 82: 788798, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Tselios K, Gladman DD, Urowitz MB: How can we define low disease activity in systemic lupus erythematosus? Semin Arthrit Rheum 48: 10351040, 2019 PubMed

  • 43.

    Kisaoglu H, Baba O, Kalyoncu M: Lupus low disease activity state as a treatment target for pediatric patients with lupus nephritis. Pediatr Nephrol 38: 11671175, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Wahadat MJ, Van Den Berg L, Timmermans D, Van Rijswijk K, van Dijk-Hummelman A, Bakx S, et al.: LLDAS is an attainable treat-to-target goal in childhood-onset SLE. Lupus Sci Med 8: e000571, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Li X, Ren H, Zhang Q, Zhang W, Wu X, Xu Y, et al.: Mycophenolate mofetil or tacrolimus compared with intravenous cyclophosphamide in the induction treatment for active lupus nephritis. Nephrol Dial Transplant 27: 14671472, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Rathi M, Goyal A, Jaryal A, Sharma A, Gupta PK, Ramachandran R, et al.: Comparison of low-dose intravenous cyclophosphamide with oral mycophenolate mofetil in the treatment of lupus nephritis. Kidney Int 89: 235242, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Appel GB, Contreras G, Dooley MA, Ginzler EM, Isenberg D, Jayne D, et al.: Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J Am Soc Nephrol 20: 11031112, 2009 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Cannon LA, Wenderfer SE, Lewandowski LB, Cooper JC, Goilav B, Knight AM, et al.: Use of EuroLupus cyclophosphamide dosing for the treatment of lupus nephritis in childhood-onset systemic lupus erythematosus in North America. J Rheumatol 49: 607614, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Wang CS, Sadun RE, Zhou W, Miller KR, Pyle L, Ardoin SP, et al.: Renal response outcomes of the EuroLupus and NIH cyclophosphamide dosing regimens in childhood‐onset proliferative lupus nephritis. Arthritis Rheumatol 76: 469478, 2024 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Smitherman EA, Chahine RA, Beukelman T, Lewandowski LB, Rahman AF, Wenderfer SE, et al.: Childhood‐onset lupus nephritis in the Childhood Arthritis and Rheumatology Research Alliance Registry: Short‐term kidney status and variation in care. Arthritis Care Res (Hoboken) 75: 15531562, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Chalhoub NE, Wenderfer SE, Levy DM, Rouster‐Stevens K, Aggarwal A, Savani SI, et al.: International consensus for the dosing of corticosteroids in childhood‐onset systemic lupus erythematosus with proliferative lupus nephritis. Arthritis Rheumatol 74: 263273, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Basu B, Roy B, Babu BG: Efficacy and safety of rituximab in comparison with common induction therapies in pediatric active lupus nephritis. Pediatr Nephrol 32: 10131021, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Hogan J, Godron A, Baudouin V, Kwon T, Harambat J, Deschênes G, et al.: Combination therapy of rituximab and mycophenolate mofetil in childhood lupus nephritis. Pediatr Nephrol 33: 111116, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Nwobi O, Abitbol CL, Chandar J, Seeherunvong W, Zilleruelo G: Rituximab therapy for juvenile-onset systemic lupus erythematosus. Pediatr Nephrol 23: 413419, 2008 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Chan EY-h, Wong S-w, Lai FF-y, Ho T-w, Tong P-c, Lai W-m, et al.: Long-term outcomes with rituximab as add-on therapy in severe childhood-onset lupus nephritis. Pediatr Nephrol 38: 40014011, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Furie R, Rovin BH, Houssiau F, Malvar A, Teng YO, Contreras G, et al.: Two-year, randomized, controlled trial of belimumab in lupus nephritis. N Engl J Med 383: 11171128, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Rovin BH, Teng YO, Ginzler EM, Arriens C, Caster DJ, Romero-Diaz J, et al.: Efficacy and safety of voclosporin versus placebo for lupus nephritis (AURORA 1): A double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 397: 20702080, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Furie RA, Aroca G, Cascino MD, Garg JP, Rovin BH, Alvarez A, et al.: B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: A randomised, double-blind, placebo-controlled trial. Ann Rheum Dis 81: 100107, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Marlais M, Wlodkowski T, Printza N, Kronsteiner D, Krisam R, Sauer L, et al.: Clinical factors and adverse kidney outcomes in children with antineutrophil cytoplasmic antibody–associated glomerulonephritis. Am J Kidney Dis 81: 119122, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Cabral DA, Canter DL, Muscal E, Nanda K, Wahezi DM, Spalding SJ, et al.: Comparing presenting clinical features in 48 children with microscopic polyangiitis to 183 children who have granulomatosis with polyangiitis (Wegener’s): An ARChiVe cohort study. Arthritis Rheumatol 68: 25142526, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Calatroni M, Consonni F, Allinovi M, Bettiol A, Jawa N, Fiasella S, et al.: Prognostic factors and long-term outcome with ANCA-associated kidney vasculitis in childhood. Clin J Am Soc Nephrol 16: 10431051, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Maliakkal JG, Hicks MJ, Michael M, Selewski DT, Twombley K, Rheault MN, et al.: Renal survival in children with glomerulonephritis with crescents: A Pediatric Nephrology Research Consortium cohort study. J Clin Med 9: 2385, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Chen A, Mammen C, Guzman J, Al-Abadi E, Benseler SM, Berard RA, et al.: Wide variation in glucocorticoid dosing in paediatric ANCA-associated vasculitis with renal disease: A paediatric vasculitis initiative study. Clin Exp Rheumatol 40: 841848, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Furuta S, Nakagomi D, Kobayashi Y, Hiraguri M, Sugiyama T, Amano K, et al.: Effect of reduced-dose vs high-dose glucocorticoids added to rituximab on remission induction in ANCA-associated vasculitis: A randomized clinical trial. JAMA 325: 21782187, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Walsh M, Merkel PA, Peh C-A, Szpirt WM, Puéchal X, Fujimoto S, et al.: Plasma exchange and glucocorticoids in severe ANCA-associated vasculitis. N Engl J Med 382: 622631, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Walsh M, Collister D, Zeng L, Merkel PA, Pusey CD, Guyatt G, et al.: The effects of plasma exchange in patients with ANCA-associated vasculitis: An updated systematic review and meta-analysis. BMJ 376: e064604, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Jayne DR, Merkel PA, Schall TJ, Bekker P: Avacopan for the treatment of ANCA-associated vasculitis. N Engl J Med 384: 599609, 2021 PubMed

  • 68.

    Pohl M: Henoch-Schonlein purpura nephritis. Pediatr Nephrol 30: 245252, 2015 PubMed

  • 69.

    Davin JC, Coppo R: Pitfalls in recommending evidence-based guidelines for a protean disease like Henoch-Schonlein purpura nephritis. Pediatr Nephrol 28: 18971903, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Willey CJ, Coppo R, Schaefer F, Mizerska-Wasiak M, Mathur M, Schultz MJ: The incidence and prevalence of IgA nephropathy in Europe. Nephrol Dial Transplant 38: 23402349, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    El Karoui K, Fervenza FC, De Vriese AS: Treatment of IgA nephropathy: A rapidly evolving field. J Am Soc Nephrol 35: 103116, 2024 PubMed

  • 72.

    Cattran DC, Floege J, Coppo R: Evaluating progression risk in patients with Immunoglobulin A nephropathy. Kidney Int Rep 8: 25152528, 2023 PubMed

  • 73.

    Howie AJ, Lalayiannis AD: Systematic review of the Oxford classification of IgA nephropathy: Reproducibility and prognostic value. Kidney360 4: 11031111, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Barbour SJ, Coppo R, Er L, Russo ML, Liu ZH, Ding J, et al.: Updating the International IgA Nephropathy Prediction Tool for use in children. Kidney Int 99: 14391450, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Ying D, Lu M, Zhi Y, Shi P, Cao L, Wang Q, et al.: External validation of the pediatric International IgA Nephropathy Prediction Tool in a central China cohort. Clin Exp Nephrol 28: 5966, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Yu X, Li J, Tao C, Jiao J, Wan J, Zhong C, et al.: Validation of the children international IgA nephropathy prediction tool based on data in Southwest China. Front Pediatr 11: 1183562, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Thompson A, Carroll K, Inker LA, Floege J, Perkovic V, Boyer-Suavet S, et al.: Proteinuria reduction as a surrogate end point in trials of IgA nephropathy. Clin J Am Soc Nephrol 14: 469481, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Inker LA, Heerspink HJL, Tighiouart H, Chaudhari J, Miao S, Diva U, et al.: Association of treatment effects on early change in urine protein and treatment effects on GFR slope in IgA nephropathy: An individual participant meta-analysis. Am J Kidney Dis 78: 340349.e1, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Inker LA, Lambers Heerspink HJ, Mondal H, Schmid CH, Tighiouart H, Noubary F, et al.: GFR decline as an alternative end point to kidney failure in clinical trials: A meta-analysis of treatment effects from 37 randomized trials. Am J Kidney Dis 64: 848859, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Chan EY-h, Ma AL-t, Tullus K: When should we start and stop ACEi/ARB in paediatric chronic kidney disease? Pediatr Nephrol 36: 17511764, 2021 PubMed

  • 81.

    Floege J, Rauen T, Eitner F: Intensive supportive care plus immunosuppression in IgA nephropathy. N Engl J Med 374: 992993, 2016 PubMed

  • 82.

    Dixon A, Blanchette E, Kendrick J: A lack of KDIGO guidelines for adolescents and young adults with IgA nephropathy. Pediatr Nephrol 39: 297304, 2024 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Coppo R: Treatment of IgA nephropathy in children: A land without KDIGO guidance. Pediatr Nephrol 36: 491496, 2021 PubMed

  • 84.

    Vaz de Castro PAS, Bitencourt L, Pereira BWS, Lima AQR, Hermida HS, Moreira Neto CR, et al.: Efficacy and safety of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for IgA nephropathy in children. Pediatr Nephrol 37: 499508, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Lv J, Zhang H, Wong MG, Jardine MJ, Hladunewich M, Jha V, et al.: Effect of oral methylprednisolone on clinical outcomes in patients with IgA nephropathy: The TESTING randomized clinical trial. JAMA 318: 432442, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Lv J, Wong MG, Hladunewich MA, Jha V, Hooi LS, Monaghan H, et al.: Effect of oral methylprednisolone on decline in kidney function or kidney failure in patients with IgA nephropathy: The TESTING randomized clinical trial. JAMA 327: 18881898, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Zhao H, Li Y, Sun J, Xu G, Wang C, Zhou S, et al.: Immunosuppression versus supportive care on kidney outcomes in IgA nephropathy in the real-world setting. Clin J Am Soc Nephrol 18: 11861194, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Zhang YM, Lv JC, Wong MG, Zhang H, Perkovic V: Glucocorticoids for IgA nephropathy-pro. Kidney Int 103: 666669, 2023 PubMed

  • 89.

    Cheung CK, Barratt J: First do no harm: Systemic glucocorticoids should not be used for the treatment of progressive IgA nephropathy. Kidney Int 103: 669673, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Heerspink HJL, Radhakrishnan J, Alpers CE, Barratt J, Bieler S, Diva U, et al.: Sparsentan in patients with IgA nephropathy: A prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial. Lancet 401: 15841594, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Rovin BH, Barratt J, Heerspink HJL, Alpers CE, Bieler S, Chae DW, et al.: Efficacy and safety of sparsentan versus irbesartan in patients with IgA nephropathy (PROTECT): 2-year results from a randomised, active-controlled, phase 3 trial. Lancet 402: 20772090, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Reich HN, Barbour SJ: PROTECTing the kidneys in IgA nephropathy. Lancet 402: 20462047, 2023 PubMed

  • 93.

    Wheeler DC, Toto RD, Stefansson BV, Jongs N, Chertow GM, Greene T, et al.: A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int 100: 215224, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Barratt J, Lafayette R, Kristensen J, Stone A, Cattran D, Floege J, et al.: Results from part A of the multi-center, double-blind, randomized, placebo-controlled NefIgArd trial, which evaluated targeted-release formulation of budesonide for the treatment of primary immunoglobulin A nephropathy. Kidney Int 103: 391402, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Lafayette R, Kristensen J, Stone A, Floege J, Tesar V, Trimarchi H, et al.: Efficacy and safety of a targeted-release formulation of budesonide in patients with primary IgA nephropathy (NefIgArd): 2-year results from a randomised phase 3 trial. Lancet 402: 859870, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Antonucci L, Colucci M, Emma F, Vivarelli M: A pediatric case of IgA nephropathy benefitting from targeted release formulation-budesonide. Pediatr Nephrol 38: 38493852, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Zhang H, Rizk DV, Perkovic V, Maes B, Kashihara N, Rovin B, et al.: Results of a randomized double-blind placebo-controlled Phase 2 study propose iptacopan as an alternative complement pathway inhibitor for IgA nephropathy. Kidney Int 105: 189199, 2024 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Peruzzi L, Coppo R: IgA vasculitis nephritis in children and adults: One or different entities? Pediatr Nephrol 36: 26152625, 2021 PubMed

  • 99.

    Terano C, Hamada R, Tatsuno I, Hamasaki Y, Araki Y, Gotoh Y, et al.: Epidemiology of biopsy-proven Henoch-Schonlein purpura nephritis in children: A nationwide survey in Japan. PLoS One 17: e0270796, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Selewski DT, Ambruzs JM, Appel GB, Bomback AS, Matar RB, Cai Y, et al.: Clinical characteristics and treatment patterns of children and adults with IgA nephropathy or IgA vasculitis: Findings from the CureGN study. Kidney Int Rep 3: 13731384, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Hastings MC, Rizk DV, Kiryluk K, Nelson R, Zahr RS, Novak J, et al.: IgA vasculitis with nephritis: Update of pathogenesis with clinical implications. Pediatr Nephrol 37: 719733, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Kurokawa M, Maehara K, Kaku Y, Honjo S: Necessity and choice of therapy for Henoch-Schonlein purpura nephritis. Pediatr Int (Roma) 64: e15282, 2022 PubMed

  • 103.

    Deki S, Hamada R, Mikami N, Terano C, Harada R, Hamasaki Y, et al.: Half of children with IgA vasculitis-associated nephritis with nephrotic state spontaneously recover. Nephrology (Carlton) 27: 681689, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Rohner K, Marlais M, Ahn YH, Ali A, Alsharief A, Novak AB, et al.: Outcome of immunosuppression in children with IgA vasculitis-related nephritis [published online ahead of print Jan 11, 2024]. Nephrol Dial Transplant doi:10.1093/ndt/gfae0092024 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 105.

    Ozen S, Marks SD, Brogan P, Groot N, de Graeff N, Avcin T, et al.: European consensus-based recommendations for diagnosis and treatment of immunoglobulin A vasculitis—The SHARE initiative. Rheumatology (Oxford) 58: 16071616, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Stone HK, Mitsnefes M, Dickinson K, Burrows EK, Razzaghi H, Luna IY, et al.: Clinical course and management of children with IgA vasculitis with nephritis. Pediatr Nephrol 38: 37213733, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Nagai S, Horinouchi T, Ninchoji T, Kondo A, Aoto Y, Ishiko S, et al.: Use of renin-angiotensin system inhibitors as initial therapy in children with Henoch-Schonlein purpura nephritis of moderate severity. Pediatr Nephrol 37: 18451853, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Mary AL, Clave S, Rousset-Rouviere C, Berard E, Boyer O, Decramer S, et al.: Outcome of children with IgA vasculitis with nephritis treated with steroids: A matched controlled study. Pediatr Nephrol 38: 33173326, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Lee MH, Chan EY, Ma AL: Timely and individualized use of immunosuppression is associated with favourable outcomes in paediatric IgA Vasculitis Nephritis. Pediatr Nephrol 37: 913914, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 531 531 156
Full Text Views 75 75 14
PDF Downloads 114 114 22