Sickle Cell Nephropathy
By:
Sola Aoun Bahous Division of Nephrology and Hypertension, Lebanese American University School of Medicine, Byblos, Lebanon

Search for other papers by Sola Aoun Bahous in
Current site
Google Scholar
PubMed
Close
and
Abdallah S. Geara Renal Electrolyte and Hypertension Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania

Search for other papers by Abdallah S. Geara in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1.

    Piel FB, Steinberg MH, Rees DC: Sickle cell disease. N Engl J Med 376: 15611573, 2017 PubMed

  • 2.

    Rees DC, Williams TN, Gladwin MT: Sickle-cell disease. Lancet 376: 20182031, 2010 PubMed

  • 3.

    Saraf SL, Molokie RE, Nouraie M, Sable CA, Luchtman-Jones L, Ensing GJ, et al: Differences in the clinical and genotypic presentation of sickle cell disease around the world. Paediatr Respir Rev 15: 412, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hassell KL: Population estimates of sickle cell disease in the U.S. Am J Prev Med 38[Suppl]: S512S521, 2010 PubMed

  • 5.

    Piel FB, Hay SI, Gupta S, Weatherall DJ, Williams TN: Global burden of sickle cell anaemia in children under five, 2010-2050: Modelling based on demographics, excess mortality, and interventions. PLoS Med 10: e1001484, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    GBD 2021 Sickle Cell Disease Collaborators: Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000–2021: A systematic analysis from the Global Burden of Disease Study 2021. Lancet Haematol 10: e585e599, 2023 10.1016/S2352-3026(23)00118-7

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ataga KI, Saraf SL, Derebail VK: The nephropathy of sickle cell trait and sickle cell disease. Nat Rev Nephrol 18: 361377, 2022 PubMed

  • 8.

    Drawz P, Ayyappan S, Nouraie M, Saraf S, Gordeuk V, Hostetter T, et al: Kidney disease among patients with sickle cell disease, hemoglobin SS and SC. Clin J Am Soc Nephrol 11: 207215, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Derebail VK, Zhou Q, Ciccone EJ, Cai J, Ataga KI: Rapid decline in estimated glomerular filtration rate is common in adults with sickle cell disease and associated with increased mortality. Br J Haematol 186: 900907, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Derebail VK, Ciccone EJ, Zhou Q, Kilgore RR, Cai J, Ataga KI: Progressive decline in estimated GFR in patients with sickle cell disease: An observational cohort study. Am J Kidney Dis 74: 4755, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ataga KI, Derebail VK, Archer DR: The glomerulopathy of sickle cell disease. Am J Hematol 89: 907914, 2014 PubMed

  • 12.

    Nath KA, Hebbel RP: Sickle cell disease: Renal manifestations and mechanisms. Nat Rev Nephrol 11: 161171, 2015 PubMed

  • 13.

    Naik RP, Derebail VK: The spectrum of sickle hemoglobin-related nephropathy: From sickle cell disease to sickle trait. Expert Rev Hematol 10: 10871094, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hebbel RP: Perspectives series: Cell adhesion in vascular biology. Adhesive interactions of sickle erythrocytes with endothelium. J Clin Invest 99: 25612564, 1997 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Zhang X, Caruso C, Lam WA, Graham MD: Flow-induced segregation and dynamics of red blood cells in sickle cell disease. Phys Rev Fluids 5: 053101, 2020 10.1103/physrevfluids.5.053101 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Caruso C, Zhang X, Sakurai Y, Wei L, Fay ME, Carden M, et al: Stiff erythrocyte subpopulations biomechanically induce endothelial inflammation in sickle cell disease. Blood 134[Suppl 1]: 3560, 2019

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Nath KA, Katusic ZS, Gladwin MT: The perfusion paradox and vascular instability in sickle cell disease. Microcirculation 11: 179193, 2004 PubMed

  • 18.

    Allon M, Lawson L, Eckman JR, Delaney V, Bourke E: Effects of nonsteroidal antiinflammatory drugs on renal function in sickle cell anemia. Kidney Int 34: 500506, 1988 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Rother RP, Bell L, Hillmen P, Gladwin MT: The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: A novel mechanism of human disease. JAMA 293: 16531662, 2005 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Nath KA, Grande JP, Haggard JJ, Croatt AJ, Katusic ZS, Solovey A, et al: Oxidative stress and induction of heme oxygenase-1 in the kidney in sickle cell disease. Am J Pathol 158: 893903, 2001 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Haymann JP, Stankovic K, Levy P, Avellino V, Tharaux PL, Letavernier E, et al: Glomerular hyperfiltration in adult sickle cell anemia: A frequent hemolysis associated feature. Clin J Am Soc Nephrol 5: 756761, 2010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hariri E, Mansour A, El Alam A, Daaboul Y, Korjian S, Aoun Bahous S: Sickle cell nephropathy: An update on pathophysiology, diagnosis, and treatment. Int Urol Nephrol 50: 10751083, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kaze FF, Kengne AP, Atanga LC, Monny Lobe M, Menanga AP, Halle MP, et al: Kidney function, urinalysis abnormalities and correlates in equatorial Africans with sickle cell disease. Clin Kidney J 6: 1520, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Bolarinwa RA, Akinlade KS, Kuti MA, Olawale OO, Akinola NO: Renal disease in adult Nigerians with sickle cell anemia: A report of prevalence, clinical features and risk factors. Saudi J Kidney Dis Transpl 23: 171175, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kiryluk K, Jadoon A, Gupta M, Radhakrishnan J: Sickle cell trait and gross hematuria. Kidney Int 71: 706710, 2007 PubMed

  • 26.

    Beckermann KE, Sharma D, Chaturvedi S, Msaouel P, Abboud MR, Allory Y, et al: Renal medullary carcinoma: Establishing standards in practice. J Oncol Pract 13: 414421, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Saraf SL, Zhang X, Kanias T, Lash JP, Molokie RE, Oza B, et al: Haemoglobinuria is associated with chronic kidney disease and its progression in patients with sickle cell anaemia. Br J Haematol 164: 729739, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Akubuilo UC, Ayuk A, Ezenwosu OU, Okafor UH, Emodi IJ: Persistent hematuria among children with sickle cell anemia in steady state. Hematol Transfus Cell Ther 42: 255260, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Becker AM: Sickle cell nephropathy: Challenging the conventional wisdom. Pediatr Nephrol 26: 20992109, 2011 PubMed

  • 30.

    Wolf RB, Kassim AA, Goodpaster RL, DeBaun MR: Nocturnal enuresis in sickle cell disease. Expert Rev Hematol 7: 245254, 2014 PubMed

  • 31.

    Eneh CI, Okafor HU, Ikefuna AN, Uwaezuoke SN: Nocturnal enuresis: Prevalence and risk factors among school-aged children with sickle-cell anaemia in a South-east Nigerian city. Ital J Pediatr 41: 66, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Zahr RS, Ding J, Kang G, Wang WC, Hankins JS, Ataga KI, et al: Enuresis and hyperfiltration in children with sickle cell disease. J Pediatr Hematol Oncol 44: 358362, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Barakat LP, Smith-Whitley K, Schulman S, Rosenberg D, Puri R, Ohene-Frempong K: Nocturnal enuresis in pediatric sickle cell disease. J Dev Behav Pediatr 22: 300305, 2001 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Alvarez O, Miller ST, Wang WC, Luo Z, McCarville MB, Schwartz GJ, et al; BABY HUG Investigators: Effect of hydroxyurea treatment on renal function parameters: Results from the multi-center placebo-controlled BABY HUG clinical trial for infants with sickle cell anemia. Pediatr Blood Cancer 59: 668674, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Readett DR, Morris J, Serjeant GR: Determinants of nocturnal enuresis in homozygous sickle cell disease. Arch Dis Child 65: 615618, 1990 PubMed

  • 36.

    Cazenave M, Audard V, Bertocchio JP, Habibi A, Baron S, Prot-Bertoye C, et al: Tubular acidification defect in adults with sickle cell disease. Clin J Am Soc Nephrol 15: 1624, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Baddam S, Aban I, Hilliard L, Howard T, Askenazi D, Lebensburger JD: Acute kidney injury during a pediatric sickle cell vaso-occlusive pain crisis. Pediatr Nephrol 32: 14511456, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Lebensburger JD, Palabindela P, Howard TH, Feig DI, Aban I, Askenazi DJ: Prevalence of acute kidney injury during pediatric admissions for acute chest syndrome. Pediatr Nephrol 31: 13631368, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    McCormick M, Richardson T, Warady BA, Novelli EM, Kalpatthi R: Acute kidney injury in paediatric patients with sickle cell disease is associated with increased morbidity and resource utilization. Br J Haematol 189: 559565, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Saraf SL, Viner M, Rischall A, Raslan R, Shah BN, Zhang X, et al: HMOX1 and acute kidney injury in sickle cell anemia. Blood 132: 16211625, 2018 PubMed

  • 41.

    Olaniran KO, Allegretti AS, Zhao SH, Nigwekar SU, Kalim S: Acute kidney injury among black patients with sickle cell trait and sickle cell disease. Clin J Am Soc Nephrol 16: 348355, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Hapca S, Siddiqui MK, Kwan RSY, Lim M, Matthew S, Doney ASF, et al; BEAt-DKD Consortium: The relationship between AKI and CKD in patients with type 2 diabetes: An observational cohort study. J Am Soc Nephrol 32: 138150, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Lebensburger JD, Aban I, Pernell B, Kasztan M, Feig DI, Hilliard LM, et al: Hyperfiltration during early childhood precedes albuminuria in pediatric sickle cell nephropathy. Am J Hematol 94: 417423, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Vazquez B, Shah B, Zhang X, Lash JP, Gordeuk VR, Saraf SL: Hyperfiltration is associated with the development of microalbuminuria in patients with sickle cell anemia. Am J Hematol 89: 11561157, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Ataga KI, Zhou Q, Saraf SL, Hankins JS, Ciccone EJ, Loehr LR, et al: Longitudinal study of glomerular hyperfiltration in adults with sickle cell anemia: A multicenter pooled analysis. Blood Adv 6: 44614470, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Derebail VK, Zhou Q, Ciccone EJ, Cai J, Ataga KI: Longitudinal study of glomerular hyperfiltration and normalization of estimated glomerular filtration in adults with sickle cell disease. Br J Haematol 195: 123132, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Niss O, Lane A, Asnani MR, Yee ME, Raj A, Creary S, et al: Progression of albuminuria in patients with sickle cell anemia: A multicenter, longitudinal study. Blood Adv 4: 15011511, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Olaniran KO, Allegretti AS, Zhao SH, Achebe MM, Eneanya ND, Thadhani RI, et al: Kidney function decline among black patients with sickle cell trait and sickle cell disease: An observational cohort study. J Am Soc Nephrol 31: 393404, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Ataga KI, Zhou Q, Derebail VK, Saraf SL, Hankins JS, Loehr LR, et al: Rapid decline in estimated glomerular filtration rate in sickle cell anemia: Results of a multicenter pooled analysis. Haematologica 106: 17491753, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Calderaro J, Masliah-Planchon J, Richer W, Maillot L, Maille P, Mansuy L, et al: Balanced translocations disrupting SMARCB1 are hallmark recurrent genetic alterations in renal medullary carcinomas. Eur Urol 69: 10551061, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Shapiro DD, Soeung M, Perelli L, Dondossola E, Surasi DS, Tripathi DN, et al: Association of high-intensity exercise with renal medullary carcinoma in individuals with sickle cell trait: Clinical observations and experimental animal studies. Cancers (Basel) 13: 6022, 2021 10.3390/cancers13236022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Brito PL, Dos Santos AF, Chweih H, Favero ME, Gotardo EMF, Silva JAF, et al: Reduced blood pressure in sickle cell disease is associated with decreased angiotensin converting enzyme (ACE) activity and is not modulated by ACE inhibition. PLoS One 17: e0263424, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Stabouli S, Antza C, Papadopoulou E, Teli A, Kotsis V, Economou M: Unmasking hypertension in children and adolescents with sickle/beta-thalassemia. J Clin Hypertens (Greenwich) 22: 14441449, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, et al: Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329: 841845, 2010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Masimango MI, Jadoul M, Binns-Roemer EA, David VA, Sumaili EK, Winkler CA, et al: APOL1 renal risk variants and sickle cell trait associations with reduced kidney function in a large congolese population-based study. Kidney Int Rep 7: 474482, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Saraf SL, Zhang X, Shah B, Kanias T, Gudehithlu KP, Kittles R, et al: Genetic variants and cell-free hemoglobin processing in sickle cell nephropathy. Haematologica 100: 12751284, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Kramer HJ, Stilp AM, Laurie CC, Reiner AP, Lash J, Daviglus ML, et al: African ancestry-specific alleles and kidney disease risk in Hispanics/Latinos. J Am Soc Nephrol 28: 915922, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Kormann R, Jannot AS, Narjoz C, Ribeil JA, Manceau S, Delville M, et al: Roles of APOL1 G1 and G2 variants in sickle cell disease patients: Kidney is the main target. Br J Haematol 179: 323335, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Reiner AP, Raffield LM, Franceschini N, Auer PL, Lange EM, Nickerson DA, et al; National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine Consortium; Effect of sickle cell trait and APOL1 genotype on the association of soluble uPAR with kidney function measures in Black Americans. Clin J Am Soc Nephrol 16: 287289, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Liem RI, Lanzkron S, D Coates T, DeCastro L, Desai AA, Ataga KI, et al: American Society of Hematology 2019 guidelines for sickle cell disease: Cardiopulmonary and kidney disease. Blood Adv 3: 38673897, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Zahr RS, Rampersaud E, Kang G, Weiss MJ, Wu G, Davis RL, et al: Children with sickle cell anemia and APOL1 genetic variants develop albuminuria early in life. Haematologica 104: e385e387, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Asnani MR, Lynch O, Reid ME: Determining glomerular filtration rate in homozygous sickle cell disease: Utility of serum creatinine based estimating equations. PLoS One 8: e69922, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Arlet JB, Ribeil JA, Chatellier G, Eladari D, De Seigneux S, Souberbielle JC, et al: Determination of the best method to estimate glomerular filtration rate from serum creatinine in adult patients with sickle cell disease: A prospective observational cohort study. BMC Nephrol 13: 83, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Yee MEM, Lane PA, Archer DR, Joiner CH, Eckman JR, Guasch A: Estimation of glomerular filtration rate using serum cystatin C and creatinine in adults with sickle cell anemia. Am J Hematol 92: E598E599, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Paz MA, Seegmiller J: Interference on the Abbott i-STAT creatinine assay caused by hydroxyurea. Am J Clin Pathol 158[Suppl 1]: S19S20, 2022

  • 66.

    Heimlich JB, Chipoka G, Elsherif L, David E, Ellis G, Kamthunzi P, et al: Nephrin as a biomarker of sickle cell glomerulopathy in Malawi. Pediatr Blood Cancer 65: e26993, 2018 10.1002/pbc.26993 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Laurentino MR, Parente Filho SLA, Parente LLC, da Silva Júnior GB, Daher EF, Lemes RPG: Non-invasive urinary biomarkers of renal function in sickle cell disease: An overview. Ann Hematol 98: 26532660, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    dos Santos TE, Gonçalves RP, Barbosa MC, da Silva GB Jr, Daher EF: Monocyte chemoatractant protein-1: A potential biomarker of renal lesion and its relation with oxidative status in sickle cell disease. Blood Cells Mol Dis 54: 297301, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Audard V, Moutereau S, Vandemelebrouck G, Habibi A, Khellaf M, Grimbert P, et al: First evidence of subclinical renal tubular injury during sickle-cell crisis. Orphanet J Rare Dis 9: 67, 2014 10.1186/1750-1172-9-67 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Miller ST, Wang WC, Iyer R, Rana S, Lane P, Ware RE, et al; BABY-HUG Investigators: Urine concentrating ability in infants with sickle cell disease: Baseline data from the phase III trial of hydroxyurea (BABY HUG). Pediatr Blood Cancer 54: 265268, 2010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Zahr RS, Hankins JS, Kang G, Li C, Wang WC, Lebensburger J, et al: Hydroxyurea prevents onset and progression of albuminuria in children with sickle cell anemia. Am J Hematol 94: E27E29, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Sasongko TH, Nagalla S: Angiotensin-converting enzyme (ACE) inhibitors for proteinuria and microalbuminuria in people with sickle cell disease. Cochrane Database Syst Rev 12: CD009191, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Thrower A, Ciccone EJ, Maitra P, Derebail VK, Cai J, Ataga KI: Effect of renin-angiotensin-aldosterone system blocking agents on progression of glomerulopathy in sickle cell disease. Br J Haematol 184: 246252, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Yee ME, Lane PA, Archer DR, Joiner CH, Eckman JR, Guasch A: Losartan therapy decreases albuminuria with stable glomerular filtration and permselectivity in sickle cell anemia. Blood Cells Mol Dis 69: 6570, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Boyle SM, Jacobs B, Sayani FA, Hoffman B: Management of the dialysis patient with sickle cell disease. Semin Dial 29: 6270, 2016 PubMed

  • 76.

    McClellan AC, Luthi JC, Lynch JR, Soucie JM, Kulkarni R, Guasch A, et al: High one year mortality in adults with sickle cell disease and end-stage renal disease. Br J Haematol 159: 360367, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Kwarteng-Siaw M, Heydarpour M, Baker O, Tucker K, Achebe M: Morbidity and mortality associated with hemodialysis versus peritoneal dialysis in patients with end stage renal disease caused by sickle cell disease. Blood 138[Suppl 1]: 488489, 2021

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Leeaphorn N, Thongprayoon C, Vaitla P, Hansrivijit P, Jadlowiec CC, Mao SA, et al: Outcomes of kidney transplant recipients with sickle cell disease: An analysis of the 2000-2019 UNOS/OPTN database. J Clin Med 10: 3063, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Huang E, Parke C, Mehrnia A, Kamgar M, Pham PT, Danovitch G, et al: Improved survival among sickle cell kidney transplant recipients in the recent era. Nephrol Dial Transplant 28: 10391046, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Bae S, Johnson M, Massie AB, Luo X, Haywood C Jr, Lanzkron SM, et al: Mortality and access to kidney transplantation in patients with sickle cell disease-associated kidney failure. Clin J Am Soc Nephrol 16: 407414, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Willis JC, Awogbade M, Howard J, Breen C, Abbas A, Harber M, et al: Outcomes following kidney transplantation in patients with sickle cell disease: The impact of automated exchange blood transfusion. PLoS One 15: e0236998, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Ataga KI, Kutlar A, Kanter J, Liles D, Cancado R, Friedrisch J, et al: Crizanlizumab for the prevention of pain crises in sickle cell disease. N Engl J Med 376: 429439, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Ataga KI, Kutlar A, Cancado R, et al: Crizanlizumab treatment is not associated with the development of proteinuria and hematuria in patients with sickle cell disease: A safety analysis from the sustain study. HemaSphere 2: 305306, 2018

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Vichinsky E, Hoppe CC, Ataga KI, Ware RE, Nduba V, El-Beshlawy A, et al; HOPE Trial Investigators: A phase 3 randomized trial of voxelotor in sickle cell disease. N Engl J Med 381: 509519, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Niihara Y, Miller ST, Kanter J, Lanzkron S, Smith WR, Hsu LL, et al; Investigators of the Phase 3 Trial of l-Glutamine in Sickle Cell Disease: A phase 3 trial of L-Glutamine in sickle cell disease. N Engl J Med 379: 226235, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Kasztan M, Fox BM, Speed JS, De Miguel C, Gohar EY, Townes TM, et al: Long-term endothelin—a receptor antagonism provides robust renal protection in humanized sickle cell disease mice. J Am Soc Nephrol 28: 24432458, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al: CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med 384: 252260, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Kanter J, Walters MC, Krishnamurti L, Mapara MY, Kwiatkowski JL, Rifkin-Zenenberg S, et al: Biologic and clinical efficacy of LentiGlobin for sickle cell disease. N Engl J Med 386: 617628, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 223 223 32
Full Text Views 169 169 40
PDF Downloads 240 240 48