Interstitial and Cystic Diseases in Children
By:
Matthew F. Satariano Northeast Ohio Medical University, Akron, Ohio

Search for other papers by Matthew F. Satariano in
Current site
Google Scholar
PubMed
Close
and
Rupesh Raina Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio

Department of Nephrology, Akron Children’s Hospital, Akron, Ohio

Search for other papers by Rupesh Raina in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1.

    Raina R, Chakraborty R, Sethi SK, Kumar D, Gibson K, Bergmann C: Diagnosis and management of renal cystic disease of the newborn: Core curriculum 2021. Am J Kidney Dis 78: 125141, 2021 10.1053/j.ajkd.2020.10.021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Sharada S, Vijayakumar M, Nageswaran P, Ekambaram S, Udani A: Multicystic dysplastic kidney: A retrospective study. Indian Pediatr 51: 641643, 2014 10.1007/s13312-014-0467-z PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Meyers ML, Treece AL, Brown BP, Vemulakonda VM: Imaging of fetal cystic kidney disease: multicystic dysplastic kidney versus renal cystic dysplasia. Pediatr Radiol 50: 19211933, 2020 10.1007/s00247-020-04755-5 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Kwatra S, Krishnappa V, Mhanna C, Murray T, Novak R, Sethi SK, et al: Cystic diseases of childhood: A review. Urology 110: 184191, 2017 10.1016/j.urology.2017.07.040 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Raina R, Houry A, Rath P, Mangat G, Pandher D, Islam M, et al. Clinical utility and tolerability of tolvaptan in the treatment of autosomal dominant polycystic kidney disease (ADPKD). Drug Healthc Patient Saf. 14: 147159, 2022 10.2147/DHPS.S338050

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Gimpel C, Bergmann C, Bockenhauer D, Breysem L, Cadnapaphornchai MA, Cetiner M, et al: International consensus statement on the diagnosis and management of autosomal dominant polycystic kidney disease in children and young people. Nat Rev Nephrol 15: 713726, 2019 10.1038/s41581-019-0155-2 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    De Rechter S, Breysem L, Mekahli D. Is autosomal dominant polycystic kidney disease becoming a pediatric disorder? Front Pediatr. 5: 272, 2017 10.3389/fped.2017.00272

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Krishnappa V, Vinod P, Deverakonda D, Raina R: Autosomal dominant polycystic kidney disease and the heart and brain. Cleve Clin J Med 84: 471481, 2017 10.3949/ccjm.84a.16107 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Pei Y, Obaji J, Dupuis A, Paterson AD, Magistroni R, Dicks E, et al: Unified criteria for ultrasonographic diagnosis of ADPKD. J Am Soc Nephrol 20: 205212, 2009 10.1681/ASN.2008050507 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kim DY, Park JH: Genetic mechanisms of ADPKD. Adv Exp Med Biol 933: 1322, 2016 10.1007/978-981-10-2041-4_2 PubMed

  • 11.

    Nair N, Chakraborty R, Mahajan Z, Sharma A, Sethi SK, Raina R. Renal manifestations of tuberous sclerosis complex. J Kidney Cancer VHL 7: 519, 2020 10.15586/jkcvhl.2020.131

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Raina R, Chakraborty R, DeCoy ME, Kline T: Autosomal-dominant polycystic kidney disease: tolvaptan use in adolescents and young adults with rapid progression. Pediatr Res 89: 894899, 2021 10.1038/s41390-020-0942-2 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cordido A, Vizoso-Gonzalez M, Garcia-Gonzalez MA. Molecular pathophysiology of autosomal recessive polycystic kidney disease. Int J Mol Sci 22: 6523, 2021 10.3390/ijms22126523

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Bergmann C. Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front Pediatr 5: 221, 2018. 10.3389/fped.2017.00221

  • 15.

    Goggolidou P, Richards T: The genetics of autosomal recessive polycystic kidney disease (ARPKD). Biochim Biophys Acta Mol Basis Dis 1868: 166348, 2022 10.1016/j.bbadis.2022.166348 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ma M: Cilia and polycystic kidney disease. Semin Cell Dev Biol 110: 139148, 2021 10.1016/j.semcdb.2020.05.003 PubMed

  • 17.

    Ilatovskaya DV, Levchenko V, Pavlov TS, Isaeva E, Klemens CA, Johnso J, et al: Salt-deficient diet exacerbates cystogenesis in ARPKD via epithelial sodium channel (ENaC). EBioMedicine 40: 663-674, 2019 10.1016/j.ebiom.2019.01.006

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kaimori JY, Lin CC, Outeda P, Garcia-Gonzalez MA, Menezes LF, Hartung EA, et al: NEDD4-family E3 ligase dysfunction due to PKHD1/Pkhd1 defects suggests a mechanistic model for ARPKD pathobiology. Sci Rep 7: 7733, 2017 10.1038/s41598-017-08284-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Saternos H, Ley S, AbouAlaiwi W. Primary cilia and calcium signaling interactions. Int J Mol Sci 21: 7109, 2020 10.3390/ijms21197109

  • 20.

    Devuyst O, Olinger E, Weber S, Eckardt K-U, Kmoch S, Rampoldi L, et al. Autosomal dominant tubulointerstitial kidney disease. Nat Rev Dis Primers 5: 60, 2019 10.1038/s41572-019-0109-9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Econimo L, Schaeffer C, Zeni L, Cortinovis R, Alberici F, Rampoldi L, et al. Autosomal dominant tubulointerstitial kidney disease: An emerging cause of genetic CKD. Kidney Int Rep 7: 23322344, 2022 10.1016/j.ekir.2022.08.012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Olinger E, Hofmann P, Kidd K, Dufour I, Belge H, Schaeffer C, et al: Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney disease due to mutations in UMOD and MUC1. Kidney Int 98: 717731, 2020 10.1016/j.kint.2020.04.038 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Micanovic R, Chitteti BR, Dagher PC, Srour EF, Khan S, Hato T, et al: Tamm-horsfall protein regulates granulopoiesis and systemic neutrophil homeostasis. J Am Soc Nephrol 26: 21722182, 2015 10.1681/ASN.2014070664 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Bernascone I, Janas S, Ikehata M, Trudu M, Corbelli A, Schaeffer C, et al: A transgenic mouse model for uromodulin-associated kidney diseases shows specific tubulo-interstitial damage, urinary concentrating defect and renal failure. Hum Mol Genet 19: 29983010, 2010 10.1093/hmg/ddq205 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Raffi H, Bates JM, Laszik Z, Kumar S: Tamm-Horsfall protein knockout mice do not develop medullary cystic kidney disease. Kidney Int 69: 19141915, 2006 10.1038/sj.ki.5000411 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Johnson BG, Dang LT, Marsh G, Roach AM, Levine ZG, Monti A, et al: Uromodulin p.Cys147Trp mutation drives kidney disease by activating ER stress and apoptosis. J Clin Invest 127: 39543969, 2017 10.1172/JCI93817 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Dvela-Levitt M, Kost-Alimova M, Emani M, Kohnert E, Thompson R, Sidhom EH, et al: Small molecule targets TMED9 and promotes lysosomal degradation to reverse proteinopathy. Cell 178: 521535.e23, 2019 10.1016/j.cell.2019.07.002 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Zivná M, Hůlková H, Matignon M, Hodanová K, Vylet’al P, Kalbácová M, et al: Dominant renin gene mutations associated with early-onset hyperuricemia, anemia, and chronic kidney failure. Am J Hum Genet 85: 204213, 2009 10.1016/j.ajhg.2009.07.010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Bockenhauer D, Jaureguiberry G: HNF1B-associated clinical phenotypes: The kidney and beyond. Pediatr Nephrol 31: 707714, 2016 10.1007/s00467-015-3142-2 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bolar NA, Golzio C, Živná M, Hayot G, Van Hemelrijk C, Schepers D, et al: Heterozygous loss-of-function SEC61A1 mutations cause autosomal-dominant tubulo-interstitial and glomerulocystic kidney disease with anemia. Am J Hum Genet 99: 174187, 2016 10.1016/j.ajhg.2016.05.028 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Schubert D, Klein MC, Hassdenteufel S, Caballero-Oteyza A, Yang L, Proietti M, et al: Plasma cell deficiency in human subjects with heterozygous mutations in Sec61 translocon alpha 1 subunit (SEC61A1). J Allergy Clin Immunol 141: 14271438, 2018 10.1016/j.jaci.2017.06.042 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Sicking M, Živná M, Bhadra P, Barešová V, Tirincsi A, Adzibeganovic D, et al. Phenylbutyrate rescues the transport defect of the Sec61α mutations V67G and T185A for renin. Life Sci Alliance 5: e202101150, 2022 10.26508/lsa.202101150

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1367 1367 243
Full Text Views 361 361 24
PDF Downloads 474 474 25