In-Center Hemodialysis
By:
Osama El Shamy Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee

Search for other papers by Osama El Shamy in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1.

    United States Renal Data System: Annual data report. Available at: https://usrds-adr.niddk.nih.gov/2022?dkrd=/about-niddk/strategic-plans-reports/usrds/annual-data-report. Accessed November 20, 2022

    • PubMed
    • Export Citation
  • 2.

    Ronco C, Clark WR: Haemodialysis membranes. Nat Rev Nephrol 14: 394410, 2018 PubMed

  • 3.

    National Kidney Foundation: A clinical update on dialyzer membranes. Available at: https://www.kidney.org/sites/default/files/02-10-6050_FBD_Clinical_bulletin.pdf. Accessed November 20, 2022

    • PubMed
    • Export Citation
  • 4.

    Davenport A: New dialysis technology and biocompatible materials. Contrib Nephrol 189: 130136, 2017 PubMed

  • 5.

    Gura V, Davenport A, Beizai M, Ezon C, Ronco C: Beta2-microglobulin and phosphate clearances using a wearable artificial kidney: a pilot study. Am J Kidney Dis 54: 104111, 2009 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ronco C, Neri M, Lorenzin A, Garzotto F, Clark WR: Multidimensional classification of dialysis membranes. Contrib Nephrol 191: 115126, 2017 PubMed

  • 7.

    Sandeman SR, Howell CA, Phillips GJ, Zheng Y, Standen G, Pletzenauer R, et al: An adsorbent monolith device to augment the removal of uraemic toxins during haemodialysis. J Mater Sci Mater Med 25: 15891597, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Canaud B: Recent advances in dialysis membranes. Curr Opin Nephrol Hypertens 30: 613622, 2021 10.1097/MNH.0000000000000744 PubMed

  • 9.

    He Y, Shiu YT, Pike DB, Roy-Chaudhury P, Cheung AK, Berceli SA: Comparison of hemodialysis arteriovenous fistula blood flow rates measured by Doppler ultrasound and phase-contrast magnetic resonance imaging. J Vasc Surg 68: 18481857.e2, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Konner K, Nonnast-Daniel B, Ritz E: The arteriovenous fistula. J Am Soc Nephrol 14: 16691680, 2003 PubMed

  • 11.

    National Kidney Foundation. KDOQI clinical practice guidelines and clinical practice recommendations for 2006 updates: Hemodialysis adequacy, peritoneal dialysis adequacy and vascular access. Available at: https://www.kidney.org/sites/default/files/docs/12-50-0210_jag_dcp_guidelines-hd_oct06_sectiona_ofc.pdf. Accessed November 12, 2022

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Moist LM, Hemmelgarn BR, Lok CE: Relationship between blood flow in central venous catheters and hemodialysis adequacy. Clin J Am Soc Nephrol 1: 965971, 2006 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Chang KY, Kim SH, Kim YO, Jin DC, Song HC, Choi EJ, et al: The impact of blood flow rate during hemodialysis on all-cause mortality. Korean J Intern Med (Korean Assoc Intern Med) 31: 11311139, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Sombolos K, Natse T, Zoumbaridis N, Mavromatidis K, Karagianni A, Fitili C: Efficacy of dual lumen jugular venous catheter hemodialysis when venous lumen is used as arterial lumen. Nephron 65: 147149, 1993 10.1159/000187457 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Senécal L, Saint-Sauveur E, Leblanc M: Blood flow and recirculation rates in tunneled hemodialysis catheters. ASAIO J 50: 9497, 2004 10.1097/01.mat.0000104825.33101.7c PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Kousoula V, Georgianos PI, Mavromatidis K, Syrganis C, Thodis E, Panagoutsos S, et al: Reversed connection of cuffed, tunneled, dual-lumen catheters with increased blood flow rate maintains the adequacy of delivered dialysis despite the higher access recirculation. Int Urol Nephrol 51: 18411847, 2019 10.1007/s11255-019-02268-1 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Ouseph R, Ward RA: Increasing dialysate flow rate increases dialyzer urea mass transfer-area coefficients during clinical use. Am J Kidney Dis 37: 316320, 2001 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Leypoldt JK, Cheung AK, Agodoa LY, Daugirdas JT, Greene T, Keshaviah PR: Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. The Hemodialysis (HEMO) Study. Kidney Int 51: 20132017, 1997 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ronco C, Brendolan A, Crepaldi C, Rodighiero M, Scabardi M: Blood and dialysate flow distributions in hollow-fiber hemodialyzers analyzed by computerized helical scanning technique. J Am Soc Nephrol 13[Suppl 1]: S53S61, 2002 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ward RA, Idoux JW, Hamdan H, Ouseph R, Depner TA, Golper TA: Dialysate flow rate and delivered Kt/Vurea for dialyzers with enhanced dialysate flow distribution. Clin J Am Soc Nephrol 6: 22352239, 2011 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Gauly A, Parisotto MT, Skinder A, Schoder V, Furlan A, Schuh E, et al: Vascular access cannulation in hemodialysis patients—a survey of current practice and its relation to dialysis dose. J Vasc Access 12: 358364, 2011 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Schmidli J, Widmer MK, Basile C, de Donato G, Gallieni M, Gibbons CP, et al.; ESVS Guidelines Committee: Editor’s choice - vascular access: 2018 clinical practice guidelines of the European Society for Vas-cular Surgery (ESVS). Eur J Vasc Endovasc Surg 55: 757818, 2018

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    National Kidney Foundation: Clinical Update. Needles and cannulas for arteriovenous fistula access: more options promote better outcomes. 2016. Available at: https://www.kidney.org/sites/default/files/Fistula%20Bulle-tin_0.pdf Accessed November 22, 2022

    • PubMed
    • Export Citation
  • 24.

    Parisotto MT, Pelliccia F, Grassmann A, Marcelli D: Elements of dialysis nursing practice associated with successful cannulation: result of an international survey. J Vasc Access 18: 114119, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Vanholder R: Single needle hemodialysis: Is the past the future? J Nephrol 33: 4958, 2020 PubMed

  • 26.

    Shibata S, Uchida S: Hyperkalemia in patients undergoing hemodialysis: Its pathophysiology and management. Ther Apher Dial 26: 314, 2022 10.1111/1744-9987.13721 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hayes CP Jr, Robinson RR: Fecal potassium excretion in patients on chronic intermittent hemodialysis. Trans Am Soc Artif Intern Organs 11: 242246, 1965 10.1097/00002480-196504000-00046 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bastl C, Hayslett JP, Binder HJ: Increased large intestinal secretion of potassium in renal insufficiency. Kidney Int 12: 916, 1977 PubMed

  • 29.

    Sandle GI, Hunter M: Apical potassium (BK) channels and enhanced potassium secretion in human colon. QJM 103: 8589, 2010 10.1093/qjmed/hcp159 PubMed

  • 30.

    Sandle GI, Gaiger E, Tapster S, Goodship TH: Enhanced rectal potassium secretion in chronic renal insufficiency: evidence for large intestinal potassium adaptation in man. Clin Sci (Lond) 71: 393401, 1986 10.1042/cs0710393 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Bilbrey GL, Carter NW, White MG, Schilling JF, Knochel JP: Potassium deficiency in chronic renal failure. Kidney Int 4: 423430, 1973 10.1038/ki.1973.138 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Butkus DE, Alfrey AC, Miller NL: Tissue potassium in chronic dialysis patients. Nephron 13: 314324, 1974 10.1159/000180407 PubMed

  • 33.

    Ferrey A, You AS, Kovesdy CP, Nakata T, Veliz M, Nguyen DV, et al: Dialysate potassium and mortality in a prospective hemodialysis cohort. Am J Nephrol 47: 415423, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Brunelli SM, Spiegel DM, Du Mond C, Oestreicher N, Winkelmayer WC, Kovesdy CP: Serum-to-dialysate potassium gradient and its association with short-term outcomes in hemodialysis patients. Nephrol Dial Transplant 33: 12071214, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Pun PH, Lehrich RW, Honeycutt EF, Herzog CA, Middleton JP: Modifiable risk factors associated with sudden cardiac arrest within hemodialysis clinics. Kidney Int 79: 218227, 2011 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Kovesdy CP, Regidor DL, Mehrotra R, Jing J, McAllister CJ, Greenland S, et al: Serum and dialysate potassium concentrations and survival in hemodialysis patients. Clin J Am Soc Nephrol 2: 9991007, 2007 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Karaboyas A, Zee J, Brunelli SM, Usvyat LA, Weiner DE, Maddux FW, et al: Dialysate potassium, serum potassium, mortality, and arrhythmia events in hemodialysis: Results from the dialysis outcomes and practice patterns study (DOPPS). Am J Kidney Dis 69: 266277, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Flythe JE, Mc Causland FR: Dialysate sodium: Rationale for evolution over time. Semin Dial 30: 99111, 2017 PubMed

  • 39.

    Dunlop JL, Vandal AC, Marshall MR: Low dialysate sodium levels for chronic haemodialysis. Cochrane Database Syst Rev 1: CD011204, 2019 PubMed

  • 40.

    Rhee CM, Ravel VA, Ayus JC, Sim JJ, Streja E, Mehrotra R, et al: Pre-dialysis serum sodium and mortality in a national incident hemodialysis cohort. Nephrol Dial Transplant 31: 9921001, 2016 10.1093/ndt/gfv341 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Stragier A, Lopot F, Švára F, Polakovič V: Fallacies and pitfalls of dialysis sodium prescription and control. Blood Purif 46: 2733, 2018 PubMed

  • 42.

    Mc Causland FR, Brunelli SM, Waikar SS: Dialysate sodium, serum sodium and mortality in maintenance hemodialysis. Nephrol Dial Transplant 27: 16131618, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Locatelli F, Ponti R, Pedrini L, Costanzo R, Di Filippo S, Marai P, et al: Sodium kinetics across dialysis membranes. Nephron 38: 174177, 1984 PubMed

  • 44.

    Rhee CM, Ayus JC, Kalantar-Zadeh K: Hyponatremia in the dialysis population. Kidney Int Rep 4: 769780, 2019 PubMed

  • 45.

    Hecking M, Karaboyas A, Saran R, Sen A, Hörl WH, Pisoni RL, et al: Predialysis serum sodium level, dialysate sodium, and mortality in maintenance hemodialysis patients: The Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 59: 238248, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Chauhan K, Pattharanitima P, Patel N, Duffy A, Saha A, Chaudhary K, et al: Rate of correction of hypernatremia and health outcomes in critically ill patients. Clin J Am Soc Nephrol 14: 656663, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Nur S, Khan Y, Nur S, Boroujerdi H: Hypernatremia: Correction rate and hemodialysis. Case Rep Med 2014: 736073, 2014 PubMed

  • 48.

    van der Sande FM, Ter Meulen KJA, Kotanko P, Kooman JP: Dialysate calcium levels: Do they matter? Blood Purif 47: 230235, 2019 PubMed

  • 49.

    National Kidney Foundation: K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 42[Suppl 3]: S1S201, 2003 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    : Kidney Disease: Improving Global Outcomes CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl 76[suppl 113]: S1S130, 2009

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Wang Z, Jiang A, Wei F, Chen H: Cardiac valve calcification and risk of cardiovascular or all-cause mortality in dialysis patients: A meta-analysis. BMC Cardiovasc Disord 18: 12, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Sherman RA, Bialy GB, Gazinski B, Bernholc AS, Eisinger RP: The effect of dialysate calcium levels on blood pressure during hemodialysis. Am J Kidney Dis 8: 244247, 1986 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Pun PH, Horton JR, Middleton JP: Dialysate calcium concentration and the risk of sudden cardiac arrest in hemodialysis patients. Clin J Am Soc Nephrol 8: 797803, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Sakoh T, Taniguchi M, Yamada S, Ohnaka S, Arase H, Tokumoto M, et al: Short- and long-term effects of dialysate calcium concentrations on mineral and bone metabolism in hemodialysis patients: The K4 study. Kidney Med 1: 296306, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Garimella PS, Malhotra R: Dialysate calcium: A lot more than “set it and forget it.” Kidney Med 1: 238241, 2019 PubMed

  • 56.

    Law MM, Smith JD, Schneider HG, Wilson S: Misclassification of calcium status in end-stage kidney disease using albumin-adjusted calcium levels. Nephrology (Carlton) 26: 725732, 2021 10.1111/nep.13910 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    O’Neill WC: The fallacy of the calcium-phosphorus product. Kidney Int 72: 792796, 2007 PubMed

  • 58.

    Sheridan K, Logomarsino JV: Effects of serum phosphorus on vascular calcification in a healthy, adult population: A systematic review. J Vasc Nurs 35: 157169, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Cozzolino M, Ciceri P, Galassi A, Mangano M, Carugo S, Capelli I, et al: The key role of phosphate on vascular calcification. Toxins (Basel) 11: 213, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Bergmark BA, Udell JA, Morrow DA, Cannon CP, Steen DL, Jarolim P, et al: Association of fibroblast growth factor 23 with recurrent cardiovascular events in patients after an acute coronary syndrome: A secondary analysis of a randomized clinical trial. JAMA Cardiol 3: 473480, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Fang YW, Leu JG, Tsai MH, Liou HH: Higher intra-dialysis serum phosphorus reduction ratio as a predictor of mortality in patients on long-term hemodialysis. Med Sci Monit 25: 691699, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Yang KH, Cho S, Kim SR, Lee YJ: Serum phosphorus levels are associated with intradialytic hypotension in hemodialysis patients. Nephron 145: 238244, 2021 10.1159/000513525 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Stevens KK, Denby L, Patel RK, Mark PB, Kettlewell S, Smith GL, et al: Deleterious effects of phosphate on vascular and endothelial function via disruption to the nitric oxide pathway. Nephrol Dial Transplant 32: 16171627, 2017 10.1093/ndt/gfw252 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Apetrii M, Covic A, Massy ZA: Magnesium supplementation: A consideration in dialysis patients. Semin Dial 31: 1114, 2018 PubMed

  • 65.

    Ochi A, Ishimura E, Tsujimoto Y, Kakiya R, Tabata T, Mori K, et al: Hair magnesium, but not serum magnesium, is associated with left ventricular wall thickness in hemodialysis patients. Circ J 77: 30293036, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Sakaguchi Y, Fujii N, Shoji T, Hayashi T, Rakugi H, Isaka Y: Hypomagnesemia is a significant predictor of cardiovascular and non-cardiovascular mortality in patients undergoing hemodialysis. Kidney Int 85: 174181, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Ter Braake AD, Shanahan CM, de Baaij JHF: Magnesium counteracts vascular calcification: Passive interference or active modulation? Arterioscler Thromb Vasc Biol 37: 14311445, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Fein P, Suda V, Borawsky C, Kapupara H, Butikis A, Matza B, et al: Relationship of serum magnesium to body composition and inflammation in peritoneal dialysis patients. Adv Perit Dial 26: 112115, 2010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Mizuiri S, Nishizawa Y, Yamashita K, Ono K, Usui K, Arita M, et al: Relationship of serum magnesium level with body composition and survival in hemodialysis patients. Hemodial Int 24: 99107, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Dekker MJE, Konings C, Canaud B, van der Sande FM, Stuard S, Raimann JG, et al: Interactions between malnutrition, inflammation, and fluid overload and their associations with survival in prevalent hemodialysis patients. J Ren Nutr 28: 435444, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Oliveira B, Cunningham J, Walsh SB: Magnesium balance in chronic and end-stage kidney disease. Adv Chronic Kidney Dis 25: 291295, 2018 PubMed

  • 72.

    Bressendorff I, Hansen D, Schou M, Pasch A, Brandi L: The effect of increasing dialysate magnesium on serum calcification propensity in subjects with end stage kidney disease: A randomized, controlled clinical trial. Clin J Am Soc Nephrol 13: 13731380, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Sakaguchi Y, Hamano T, Isaka Y: Magnesium in hemodialysis patients: A new understanding of the old problem. Contrib Nephrol 196: 5863, 2018 PubMed

  • 74.

    Yu L, Song J, Lu X, Zu Y, Li H, Wang S: Association between serum magnesium and erythropoietin responsiveness in hemodialysis patients: A cross-sectional study. Kidney Blood Press Res 44: 354361, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Sharma R, Rosner MH: Glucose in the dialysate: Historical perspective and possible implications? Hemodial Int 12: 221226, 2008 PubMed

  • 76.

    Parsons FM, Stewart WK: The composition of dialysis fluid. In: Replacement of Renal Function by Dialysis, 2nd Ed., edited by Druk-ker W, Parsons FM, Maher JF, Boston, Maritnus, Nijhoff, 1983, pp 148170

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Wathen RL, Keshaviah P, Hommeyer P, Cadwell K, Comty CM: The metabolic effects of hemodialysis with and without glucose in the dialysate. Am J Clin Nutr 31: 18701875, 1978 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    National Kidney Foundation: KDOQI clinical practice guideline for hemodialysis adequacy: 2015 update. Am J Kidney Dis 66: 884930, 2015 PubMed

  • 79.

    Saran R, Bragg-Gresham JL, Levin NW, Twardowski ZJ, Wizemann V, Saito A, et al: Longer treatment time and slower ultrafiltration in hemodialysis: associations with reduced mortality in the DOPPS. Kidney Int 69: 12221228, 2006 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Kim TW, Chang TI, Kim TH, Chou JA, Soohoo M, Ravel VA, et al: Association of ultrafiltration rate with mortality in incident hemodialysis patients. Nephron 139: 1322, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Flythe JE, Kimmel SE, Brunelli SM: Rapid fluid removal during dialysis is associated with cardiovascular morbidity and mortality. Kidney Int 79: 250257, 2011 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Brown M, Burrows L, Pruett T, Burrows T: Hemodialysis-induced myocardial stunning: A review. Nephrol Nurs J 42: 5966, quiz 67, 2015 PubMed

  • 83.

    Breidthardt T, Burton JO, Odudu A, Eldehni MT, Jefferies HJ, McIntyre CW: Troponin T for the detection of dialysis-induced myocardial stunning in hemodialysis patients. Clin J Am Soc Nephrol 7: 12851292, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Daugirdas JT, Schneditz D: Hemodialysis ultrafiltration rate targets should be scaled to body surface area rather than to body weight. Semin Dial 30: 1519, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Flythe JE, Assimon MM, Wang L: Ultrafiltration rate scaling in hemodialysis patients. Semin Dial 30: 282283, 2017 PubMed

  • 86.

    Liang XK, Li LJ, Wang XH, Wang XX, Wang YD, Xu ZF: Role of lung ultrasound in adjusting ultrafiltration volume in hemodialysis patients. Ultrasound Med Biol 45: 732740, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Sargent JA: Control of dialysis by a single-pool urea model: The National Cooperative Dialysis Study. Kidney Int Suppl (13): S19S25, 1983 PubMed

  • 88.

    Gotch FA, Sargent JA: A mechanistic analysis of the National Cooperative Dialysis Study (NCDS). Kidney Int 28: 526534, 1985 PubMed

  • 89.

    Daugirdas JT: Second generation logarithmic estimates of single-pool variable volume Kt/V: An analysis of error. J Am Soc Nephrol 4: 12051213, 1993 PubMed

  • 90.

    Hakim RM, Breyer J, Ismail N, Schulman G: Effects of dose of dialysis on morbidity and mortality. Am J Kidney Dis 23: 661669, 1994 PubMed

  • 91.

    Spalding EM, Chandna SM, Davenport A, Farrington K: Kt/V underestimates the hemodialysis dose in women and small men. Kidney Int 74: 348355, 2008 PubMed

  • 92.

    Perl J, Dember LM, Bargman JM, Browne T, Charytan DM, Flythe JE, et al; American Society of Nephrology Dialysis Advisory Group: The use of a multidimensional measure of dialysis adequacy: Moving beyond small solute kinetics. Clin J Am Soc Nephrol 12: 839847, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Allon M: Vascular access for hemodialysis patients: New data should guide decision making. Clin J Am Soc Nephrol 14: 954961, 2019 PubMed

  • 94.

    Woo K, Lok CE: New insights into dialysis vascular access: What is the optimal vascular access type and timing of access creation in CKD and dialysis patients? Clin J Am Soc Nephrol 11: 14871494, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Maya ID, O’Neal JC, Young CJ, Barker-Finkel J, Allon M: Outcomes of brachiocephalic fistulas, transposed brachiobasilic fistulas, and upper arm grafts. Clin J Am Soc Nephrol 4: 8692, 2009 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Pillado E, Behdad M, Williams R, Wilson SE: Flow rates at thirty days after construction of radiocephalic arteriovenous fistula predict hemodialysis function. Ann Vasc Surg 49: 268272, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Puskar D, Pasini J, Savić I, Bedalov G, Sonicki Z: Survival of primary arteriovenous fistula in 463 patients on chronic hemodialysis. Croat Med J 43: 306311, 2002 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Chang TI, Paik J, Greene T, Desai M, Bech F, Cheung AK, et al: Intradialytic hypotension and vascular access thrombosis. J Am Soc Nephrol 22: 15261533, 2011 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Lok CE, Allon M, Moist L, Oliver MJ, Shah H, Zimmerman D: Risk equation determining unsuccessful cannulation events and failure to maturation in arteriovenous fistulas (REDUCE FTM I). J Am Soc Nephrol 17: 32043212, 2006 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Chan MR, Young HN, Becker YT, Yevzlin AS: Obesity as a predictor of vascular access outcomes: analysis of the USRDS DMMS Wave II study. Semin Dial 21: 274279, 2008 10.1111/j.1525-139X.2008.00434.x PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Vassalotti JA, Jennings WC, Beathard GA, Neumann M, Caponi S, Fox CH, et al; Fistula First Breakthrough Initiative Community Education Committee: Fistula first breakthrough initiative: targeting catheter last in fistula first. Semin Dial 25: 303310, 2012 10.1111/j.1525-139X.2012.01069.x PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Quinn RR, Oliver MJ, Devoe D, Poinen K, Kabani R, Kamar F, et al: The effect of predialysis fistula attempt on risk of all-cause and access-related death. J Am Soc Nephrol 28: 613620, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Qian JZ, McAdams-DeMarco M, Ng DK, Lau B: Arteriovenous fistula placement, maturation, and patency loss in older patients initiating hemodialysis. Am J Kidney Dis 76: 480489.e1, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Drew DA, Lok CE, Cohen JT, Wagner M, Tangri N, Weiner DE: Vascular access choice in incident hemodialysis patients: a decision analysis. J Am Soc Nephrol 26: 183191, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 105.

    Nesrallah GE: Pro: Buttonhole cannulation of arteriovenous fistulae. Nephrol Dial Transplant 31: 520523, 2016 PubMed

  • 106.

    Huang SS, MacRae J, Ross D, Imtiaz R, Hollingsworth B, Nesrallah GE, et al: Buttonhole versus stepladder cannulation for home hemodialysis: A multicenter, randomized, pilot trial. Clin J Am Soc Nephrol 14: 403410, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Nadeau-Fredette AC, Johnson DW: Con: Buttonhole cannulation of arteriovenous fistulae. Nephrol Dial Transplant 31: 525528, 2016 PubMed

  • 108.

    Krivitski NM: Theory and validation of access flow measurement by dilution technique during hemodialysis. Kidney Int 48: 244250, 1995 PubMed

  • 109.

    Valliant A, McComb K: Vascular access monitoring and surveillance: An update. Adv Chronic Kidney Dis 22: 446452, 2015 PubMed

  • 110.

    Moist L, Lok CE: Con: Vascular access surveillance in mature fistulas: is it worthwhile? Nephrol Dial Transplant 34: 11061111, 2019 PubMed

  • 111.

    Viecelli AK, Tong A, O’Lone E, Ju A, Hanson CS, Sautenet B, et al; SONG-HD Vascular Access Workshop Investigators: Report of the standardized outcomes in nephrology-hemodialysis (SONG-HD) consensus workshop on establishing a core outcome measure for hemodialysis vascular access. Am J Kidney Dis 71: 690700, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Masud A, Costanzo EJ, Zuckerman R, Asif A: The complications of vascular access in hemodialysis. Semin Thromb Hemost 44: 5759, 2018 PubMed

  • 113.

    Shafi T, Levey AS: Measurement and estimation of residual kidney function in patients on dialysis. Adv Chronic Kidney Dis 25: 93104, 2018 PubMed

  • 114.

    Kong J, Davies M, Mount P: The importance of residual kidney function in haemodialysis patients. Nephrology (Carlton) 23: 10731080, 2018 PubMed

  • 115.

    Daugirdas JT, Greene T, Rocco MV, Kaysen GA, Depner TA, Levin NW, et al; FHN Trial Group: Effect of frequent hemodialysis on residual kidney function. Kidney Int 83: 949958, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Milutinovic J, Cutler RE, Hoover P, Meijsen B, Scribner BH: Measurement of residual glomerular filtration rate in the patient receiving repetitive hemodialysis. Kidney Int 8: 185190, 1975 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    Wong J, Vilar E, Davenport A, Farrington K: Incremental haemodialysis. Nephrol Dial Transplant 30: 16391648, 2015 PubMed

  • 118.

    Lin YF, Huang JW, Wu MS, Chu TS, Lin SL, Chen YM, et al: Comparison of residual renal function in patients undergoing twice-weekly versus three-times-weekly haemodialysis. Nephrology (Carlton) 14: 5964, 2009 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119.

    Mathew AT, Fishbane S, Obi Y, Kalantar-Zadeh K: Preservation of residual kidney function in hemodialysis patients: reviving an old concept. Kidney Int 90: 262271, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Bonomini V, Feletti C, Scolari MP, Stefoni S: Benefits of early initiation of dialysis. Kidney Int Suppl 17: S57S59, 1985 PubMed

  • 121.

    Locatelli F, Andrulli S, Pontoriero G, Di Filippo S, Bigi MC: Supplemented low-protein diet and once-weekly hemodialysis. Am J Kidney Dis 24: 192204, 1994 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122.

    Golper TA: Incremental dialysis. J Am Soc Nephrol 9[Suppl]: S107S111, 1998 PubMed

  • 123.

    NKF-DOQI Clinical Practice Guidelines on Peritoneal Dialysis Adequacy: 2006. Available at: http://kidneyfoundation.cachefly.net/professionals/KDO-QI/guideline_upHD_PD_VA/index.htm. Accessed December 22, 2022

    • PubMed
    • Export Citation
  • 124.

    Murea M, Moossavi S, Garneata L, Kalantar-Zadeh K: Narrative review of incremental hemodialysis. Kidney Int Rep 5: 135148, 2019 PubMed

  • 125.

    Golper TA, Mehrotra R: The intact nephron hypothesis in reverse: An argument to support incremental dialysis. Nephrol Dial Transplant 30: 16021604, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Grubbs V, Moss AH, Cohen LM, Fischer MJ, Germain MJ, Jassal SV, et al; Dialysis Advisory Group of the American Society of Nephrology: A palliative approach to dialysis care: a patient-centered transition to the end of life. Clin J Am Soc Nephrol 9: 22032209, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    Renal Physicians Association: Clinical Practice Guidelines on Adequacy of Hemodialysis, Washington, DC, Renal Physicians Association, 1993

  • 128.

    Eknoyan G, Beck GJ, Cheung AK, Daugirdas JT, Greene T, Kusek JW, et al; Hemodialysis (HEMO) Study Group: Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med 347: 20102019, 2002 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 129.

    Suri RS, Larive B, Sherer S, Eggers P, Gassman J, James SH, et al; Frequent Hemodialysis Network Trial Group: Risk of vascular access complications with frequent hemodialysis. J Am Soc Nephrol 24: 498505, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    Chertow GM, Levin NW, Beck GJ, Depner TA, Eggers PW, Gassman JJ, et al; FHN Trial Group: In-center hemodialysis six times per week versus three times per week. N Engl J Med 363: 22872300, 2010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    Fliser D, Schröter M, Neubeck M, Ritz E: Coadministration of thiazides increases the efficacy of loop diuretics even in patients with advanced renal failure. Kidney Int 46: 482488, 1994 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 132.

    Golper TA: Incremental dialysis: Review of recent literature. Curr Opin Nephrol Hypertens 26: 543547, 2017 PubMed

  • 133.

    Sibbel S, Walker AG, Colson C, Tentori F, Brunelli SM, Flythe J: Association of continuation of loop diuretics at hemodialysis initiation with clinical outcomes. Clin J Am Soc Nephrol 14: 95102, 2019 10.2215/CJN.05080418 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 134.

    Yan Y, Wang M, Zee J, Schaubel D, Tu C, Qian J, et al: Twice-weekly hemodialysis and clinical outcomes in the china dialysis outcomes and practice patterns study. kidney int rep 3: 889896, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 135.

    Maduell F, Navarro V, Cruz MC, Torregrosa E, Garcia D, Simon V, et al: Osteocalcin and myoglobin removal in on-line hemodiafiltration versus low- and high-flux hemodialysis. Am J Kidney Dis 40: 582589, 2002 10.1053/ajkd.2002.34918 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 136.

    Cornelis T, van der Sande FM, Eloot S, Cardinaels E, Bekers O, Damoiseaux J, et al: Acute hemodynamic response and uremic toxin removal in conventional and extended hemodialysis and hemodiafiltration: A randomized crossover study. Am J Kidney Dis 64: 247256, 2014 10.1053/j.ajkd.2014.02.016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 137.

    Maduell F, Moreso F, Pons M, Ramos R, Mora-Macià J, Carreras J, et al; ESHOL Study Group: High-efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients. J Am Soc Nephrol 24: 487497, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 138.

    Lorenzin A, Neri M, Clark WR, Garzotto F, Brendolan A, Nalesso F, et al: Modeling of internal filtration in Theranova hemodialyzers. Contrib Nephrol 191: 127141, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 139.

    Canaud B, Blankestijn PJ, Grooteman MPC, Davenport A: Why and how high volume hemodiafiltration may reduce cardiovascular mortality in stage 5 chronic kidney disease dialysis patients? A comprehensive literature review on mechanisms involved. Semin Dial 35: 117128, 2022 10.1111/sdi.13039 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 140.

    Arese M, Cristol JP, Bosc JY, Bussolino F, Wratten ML, Tetta C, et al: Removal of constitutive and inducible nitric oxide synthase-active compounds in a modified hemodiafiltration with on-line production of substitution fluid: The contribution of convection and diffusion. Int J Artif Organs 19: 704711, 1996 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Rodriguez A, Morena M, Bargnoux AS, Chenine L, Leray-Moragues H, Cristol JP, et al: Quantitative assessment of sodium mass removal using ionic dialysance and sodium gradient as a proxy tool: Comparison of high-flux hemodialysis versus online hemodiafiltration. Artif Organs 45: E280E292, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    de Roij van Zuijdewijn CLM, van Gastel LHA, Ter Wee PM, Bots ML, Blankestijn PJ, van den Dorpel MA, et al: The effect of natriuretic C-type peptide and its change over time on mortality in patients on haemodialysis or haemodiafiltration. Clin Kidney J 14: 375381, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Weiner DE, Falzon L, Skoufos L, Bernardo A, Beck W, Xiao M, et al: Efficacy and safety of expanded hemodialysis with the Theranova 400 dialyzer: A randomized controlled trial. Clin J Am Soc Nephrol 15: 13101319, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    Blankestijn PJ, Vernooij RWM, Hockham C, Strippoli GFM, Canaud B, Hegbrant J, et al; CONVINCE Scientific Committee Investigators: Effect of hemodiafiltration or hemodialysis on mortality in kidney failure. N Engl J Med Jun 16, 2023 10.1056/NEJMoa2304820 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Turner JM, Peixoto AJ: Blood pressure targets for hemodialysis patients. Kidney Int 92: 816823, 2017 PubMed

  • 146.

    Robinson BM, Tong L, Zhang J, Wolfe RA, Goodkin DA, Greenwood RN, et al: Blood pressure levels and mortality risk among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Kidney Int 82: 570580, 2012 10.1038/ki.2012.136 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Doulton TWR, Swift PA, Murtaza A, Dasgupta I: Uncertainties in BP management in dialysis patients. Semin Dial 33: 223235, 2020 10.1111/sdi.12880 PubMed

  • 148.

    Agarwal R, Andersen MJ, Light RP: Location not quantity of blood pressure measurements predicts mortality in hemodialysis patients. Am J Nephrol 28: 210217, 2008 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 149.

    Bansal N, McCulloch CE, Rahman M, Kusek JW, Anderson AH, Xie D, et al; CRIC Study Investigators: Blood pressure and risk of all-cause mortality in advanced chronic kidney disease and hemodialysis: the chronic renal insufficiency cohort study. Hypertension 65: 93100, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    Alborzi P, Patel N, Agarwal R: Home blood pressures are of greater prognostic value than hemodialysis unit recordings. Clin J Am Soc Nephrol 2: 12281234, 2007 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    Shafi T, Sozio SM, Bandeen-Roche KJ, Ephraim PL, Luly JR, St Peter WL, et al; DEcIDE Network Patient Outcomes in End Stage Renal Disease Study Investigators: Predialysis systolic BP variability and outcomes in hemodialysis patients. J Am Soc Nephrol 25: 799809, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 152.

    Flythe JE, Brunelli SM: Blood pressure variability among chronic dialysis patients: recent advances in knowledge. Curr Opin Nephrol Hypertens 24: 163169, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 153.

    Klassen PS, Lowrie EG, Reddan DN, DeLong ER, Coladonato JA, Szczech LA, et al: Association between pulse pressure and mortality in patients undergoing maintenance hemodialysis. JAMA 287: 15481555, 2002 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 154.

    K/DOQI Workgroup: K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am J Kidney Dis 45[Suppl 3]: S1S153, 2005 PubMed

  • 155.

    MyTEMP writing committee: Personalised cooler dialysate for patients receiving maintenance haemodialysis (MyTEMP): A pragmatic, cluster-randomised trial. Lancet 400: 16931703, 2022 10.1016/S0140-6736(22)01805-0 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 156.

    Davenport A, Cox C, Thuraisingham R: Achieving blood pressure targets during dialysis improves control but increases intradialytic hypotension. Kidney Int 73: 759764, 2008 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 157.

    Wang KM, Sirich TL, Chang TI: Timing of blood pressure medications and intradialytic hypotension. Semin Dial 32: 201204, 2019 PubMed

  • 158.

    Sherman RA, Torres F, Cody RP: Postprandial blood pressure changes during hemodialysis. Am J Kidney Dis 12: 3739, 1988 PubMed

  • 159.

    Zoccali C, Mallamaci F, Ciccarelli M, Maggiore Q: Postprandial alterations in arterial pressure control during hemodialysis in uremic patients. Clin Nephrol 31: 323326, 1989 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 160.

    Kistler BM, Fitschen PJ, Ikizler TA, Wilund KR: Rethinking the restriction on nutrition during hemodialysis treatment. J Ren Nutr 25: 8187, 2015 PubMed

  • 161.

    Agarwal R, Georgianos P: Feeding during dialysis-risks and uncertainties. Nephrol Dial Transplant 33: 917922, 2018 PubMed

  • 162.

    Chang TI: Timing of antihypertensive medications on key outcomes in hemodialysis (TAKE-HOLD). ClinicalTrials.gov Identifier: NCT033279092017. https://clinicaltrials.gov/ct2/show/NCT03327909. Accessed December 22, 2022.

    • PubMed
    • Export Citation
  • 163.

    Eschbach JW, Kelly MR, Haley NR, Abels RI, Adamson JW: Treatment of the anemia of progressive renal failure with recombinant human erythropoietin. N Engl J Med 321: 158163, 1989 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 164.

    Eschbach JW, Abdulhadi MH, Browne JK, Delano BG, Downing MR, Egrie JC, et al: Recombinant human erythropoietin in anemic patients with end-stage renal disease. Results of a phase III multicenter clinical trial. Ann Intern Med 111: 9921000, 1989 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 165.

    Van Buren PN, Inrig JK: Special situations: Intradialytic hypertension/chronic hypertension and intradialytic hypotension. Semin Dial 30: 545552, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 166.

    Kerr P, Perkovic V, Petrie J, Agar J, Disney A; Caring for Australians with Renal Impairment (CARI): The CARI guidelines. Dialysis adequacy (HD) guidelines. Nephrology (Carlton) 10[Suppl 4]: S61S80, 2005 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 167.

    Kessler M, Gangemi C, Gutierrez Martones A, Lacombe JL, Krier-Coudert MJ, Galland R, et al: Heparin-grafted dialysis membrane allows minimal systemic anticoagulation in regular hemodialysis patients: a prospective proof-of-concept study. Hemodial Int 17: 282293, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 168.

    Laville M, Dorval M, Fort Ros J, Fay R, Cridlig J, Nortier JL, et al: Results of the HepZero study comparing heparin-grafted membrane and standard care show that heparin-grafted dialyzer is safe and easy to use for heparin-free dialysis. Kidney Int 86: 12601267, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 169.

    Kessler M, Moureau F, Nguyen P: Anticoagulation in chronic hemodialysis: Progress toward an optimal approach. Semin Dial 28: 474489, 2015 PubMed

  • 170.

    Bonde AN, Lip GY, Kamper AL, Hansen PR, Lamberts M, Hommel K, et al: Net clinical benefit of antithrombotic therapy in patients with atrial fibrillation and chronic kidney disease: a nationwide observational cohort study. J Am Coll Cardiol 64: 24712482, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 171.

    Voskamp PWM, Rookmaaker MB, Verhaar MC, Dekker FW, Ocak G: Vitamin K antagonist use and mortality in dialysis patients. Nephrol Dial Transplant 33: 170176, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 172.

    Hu A, Niu J, Winkelmayer WC: Oral anticoagulation in patients with end-stage kidney disease on dialysis and atrial fibrillation. Semin Nephrol 38: 618628, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 202 202 154
Full Text Views 293 293 246
PDF Downloads 344 344 283