Renal Phosphate Transport
By:
Carsten A. WagnerInstitute of Physiology, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
National Center of Competence in Research Kidney Control of Homeostasis, Zurich, Switzerland

Search for other papers by Carsten A. Wagner in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1.

    Voelkl J, Egli-Spichtig D, Alesutan I, Wagner CA: Inflammation: A putative link between phosphate metabolism and cardiovascular disease. Clin Sci (Lond) 135: 201227, 2021 PubMed

    • Search Google Scholar
    • Export Citation
  • 2.

    Mohammad J, Scanni R, Bestmann L, Hulter HN, Krapf R: A controlled increase in dietary phosphate elevates BP in healthy human subjects. J Am Soc Nephrol 29: 20892098, 2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 3.

    Scanni R, vonRotz M, Jehle S, Hulter HN, Krapf R: The human response to acute enteral and parenteral phosphate loads. J Am Soc Nephrol 25: 27302739, 2014 PubMed

    • Search Google Scholar
    • Export Citation
  • 4.

    Bourgeois S, Capuano P, Stange G, Mühlemann R, Murer H, Biber J, et al.: The phosphate transporter NaPi-IIa determines the rapid renal adaptation to dietary phosphate intake in mouse irrespective of persistently high FGF23 levels. Pflugers Arch 465: 15571572, 2013 PubMed

    • Search Google Scholar
    • Export Citation
  • 5.

    Giral H, Caldas Y, Sutherland E, Wilson P, Breusegem S, Barry N, et al.: Regulation of rat intestinal Na-dependent phosphate transporters by dietary phosphate. Am J Physiol Renal Physiol 297: F1466F1475, 2009 PubMed

    • Search Google Scholar
    • Export Citation
  • 6.

    Rubio-Aliaga I, Krapf R: Phosphate intake, hyperphosphatemia, and kidney function. Pflugers Arch 474: 935947, 2022 PubMed

  • 7.

    Hernando N, Wagner CA: Mechanisms and regulation of intestinal phosphate absorption. Compr Physiol 8: 10651090, 2018 PubMed

  • 8.

    Hernando N, Pastor-Arroyo EM, Marks J, Schnitzbauer U, Knöpfel T, Bürki M, et al.: 1,25(OH)2 vitamin D3 stimulates active phosphate transport but not paracellular phosphate absorption in mouse intestine. J Physiol 599: 11311150, 2021 PubMed

    • Search Google Scholar
    • Export Citation
  • 9.

    Pastor-Arroyo EM, Knöpfel T, Imenez Silva PH, Schnitzbauer U, Poncet N, Biber J, et al.: Intestinal epithelial ablation of Pit-2/Slc20a2 in mice leads to sustained elevation of vitamin D3 upon dietary restriction of phosphate. Acta Physiol (Oxf) 230: e13526, 2020 PubMed

    • Search Google Scholar
    • Export Citation
  • 10.

    Ichida Y, Ohtomo S, Yamamoto T, Murao N, Tsuboi Y, Kawabe Y, et al.: Evidence of an intestinal phosphate transporter alternative to type IIb sodium-dependent phosphate transporter in rats with chronic kidney disease. Nephrol Dial Transplant 36: 6875, 2021 PubMed

    • Search Google Scholar
    • Export Citation
  • 11.

    King AJ, Siegel M, He Y, Nie B, Wang J, Koo-McCoy S, et al.: Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. Sci Transl Med 10: eaam6474, 2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 12.

    Block GA, Bleyer AJ, Silva AL, Weiner DE, Lynn RI, Yang Y, et al.: Safety and efficacy of tenapanor for long-term serum phosphate control in maintenance dialysis: A 52-week randomized phase 3 trial (PHREEDOM). Kidney360 2: 16001610, 2021 PubMed

    • Search Google Scholar
    • Export Citation
  • 13.

    Cozzolino M, Ketteler M, Wagner CA: An expert update on novel therapeutic targets for hyperphosphatemia in chronic kidney disease: Preclinical and clinical innovations. Expert Opin Ther Targets 24: 477488, 2020 PubMed

    • Search Google Scholar
    • Export Citation
  • 14.

    Wagner CA: Coming out of the PiTs-novel strategies for controlling intestinal phosphate absorption in patients with CKD. Kidney Int 98: 273275, 2020 PubMed

    • Search Google Scholar
    • Export Citation
  • 15.

    Motta SE, Imenez Silva PH, Daryadel A, Haykir B, Pastor-Arroyo EM, Bettoni C, et al.: Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease. Pflugers Arch 472: 449460, 2020 PubMed

    • Search Google Scholar
    • Export Citation
  • 16.

    Levi M, Gratton E, Forster IC, Hernando N, Wagner CA, Biber J, et al.: Mechanisms of phosphate transport. Nat Rev Nephrol 15: 482500, 2019 PubMed

    • Search Google Scholar
    • Export Citation
  • 17.

    Legati A, Giovannini D, Nicolas G, López-Sánchez U, Quintáns B, Oliveira JR, et al.: Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. Nat Genet 47: 579581, 2015 PubMed

    • Search Google Scholar
    • Export Citation
  • 18.

    Anheim M, López-Sánchez U, Giovannini D, Richard AC, Touhami J, N’Guyen L, et al.: XPR1 mutations are a rare cause of primary familial brain calcification. J Neurol 263: 15591564, 2016 PubMed

    • Search Google Scholar
    • Export Citation
  • 19.

    Ansermet C, Moor MB, Centeno G, Auberson M, Hu DZ, Baron R, et al.: Renal fanconi syndrome and hypophosphatemic rickets in the absence of xenotropic and polytropic retroviral receptor in the nephron. J Am Soc Nephrol 28: 10731078, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 20.

    Bacic D, Lehir M, Biber J, Kaissling B, Murer H, Wagner CA: The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int 69: 495503, 2006 PubMed

    • Search Google Scholar
    • Export Citation
  • 21.

    Küng CJ, Haykir B, Schnitzbauer U, Egli-Spichtig D, Hernando N, Wagner CA: Fibroblast growth factor 23 leads to endolysosomal routing of the renal phosphate cotransporters NaPi-IIa and NaPi-IIc in vivo. Am J Physiol Renal Physiol 321: F785F798, 2021 PubMed

    • Search Google Scholar
    • Export Citation
  • 22.

    Picard N, Capuano P, Stange G, Mihailova M, Kaissling B, Murer H, et al.: Acute parathyroid hormone differentially regulates renal brush border membrane phosphate cotransporters. Pflugers Arch 460: 677687, 2010 PubMed

    • Search Google Scholar
    • Export Citation
  • 23.

    Nishida Y, Taketani Y, Yamanaka-Okumura H, Imamura F, Taniguchi A, Sato T, et al.: Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int 70: 21412147, 2006 PubMed

    • Search Google Scholar
    • Export Citation
  • 24.

    Thomas L, Bettoni C, Knöpfel T, Hernando N, Biber J, Wagner CA: Acute adaption to oral or intravenous phosphate requires parathyroid hormone. J Am Soc Nephrol 28: 903914, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 25.

    Michigami T, Kawai M, Yamazaki M, Ozono K: Phosphate as a signaling molecule and its sensing mechanism. Physiol Rev 98: 23172348, 2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 26.

    Chande S, Bergwitz C: Role of phosphate sensing in bone and mineral metabolism. Nat Rev Endocrinol 14: 637655, 2018 PubMed

  • 27.

    Gaasbeek A, Meinders AE: Hypophosphatemia: An update on its etiology and treatment. Am J Med 118: 10941101, 2005 PubMed

  • 28.

    Lederer E, Wagner CA: Clinical aspects of the phosphate transporters NaPi-IIa and NaPi-IIb: Mutations and disease associations. Pflugers Arch 471: 137148, 2019 PubMed

    • Search Google Scholar
    • Export Citation
  • 29.

    Magen D, Berger L, Coady MJ, Ilivitzki A, Militianu D, Tieder M, et al.: A loss-of-function mutation in NaPi-IIa and renal Fanconi’s syndrome. N Engl J Med 362: 11021109, 2010 PubMed

    • Search Google Scholar
    • Export Citation
  • 30.

    Schlingmann KP, Ruminska J, Kaufmann M, Dursun I, Patti M, Kranz B, et al.: Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol 27: 604614, 2016 PubMed

    • Search Google Scholar
    • Export Citation
  • 31.

    Dasgupta D, Wee MJ, Reyes M, Li Y, Simm PJ, Sharma A, et al.: Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis. J Am Soc Nephrol 25: 23662375, 2014 PubMed

    • Search Google Scholar
    • Export Citation
  • 32.

    Haito-Sugino S, Ito M, Ohi A, Shiozaki Y, Kangawa N, Nishiyama T, et al.: Processing and stability of type IIc sodium-dependent phosphate cotransporter mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria. Am J Physiol Cell Physiol 302: C1316C1330, 2012 PubMed

    • Search Google Scholar
    • Export Citation
  • 33.

    Amar A, Majmundar AJ, Ullah I, Afzal A, Braun DA, Shril S, et al.: Gene panel sequencing identifies a likely monogenic cause in 7% of 235 Pakistani families with nephrolithiasis. Hum Genet 138: 211219, 2019 PubMed

    • Search Google Scholar
    • Export Citation
  • 34.

    Braun DA, Lawson JA, Gee HY, Halbritter J, Shril S, Tan W, et al.: Prevalence of monogenic causes in pediatric patients with nephrolithiasis or nephrocalcinosis. Clin J Am Soc Nephrol 11: 664672, 2016 PubMed

    • Search Google Scholar
    • Export Citation
  • 35.

    Daga A, Majmundar AJ, Braun DA, Gee HY, Lawson JA, Shril S, et al.: Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis and nephrocalcinosis. Kidney Int 93: 204213, 2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 36.

    Halbritter J, Baum M, Hynes AM, Rice SJ, Thwaites DT, Gucev ZS, et al.: Fourteen monogenic genes account for 15% of nephrolithiasis/nephrocalcinosis. J Am Soc Nephrol 26: 543551, 2015 PubMed

    • Search Google Scholar
    • Export Citation
  • 37.

    Köttgen A, Pattaro C, Böger CA, Fuchsberger C, Olden M, Glazer NL, et al.: New loci associated with kidney function and chronic kidney disease. Nat Genet 42: 376384, 2010 PubMed

    • Search Google Scholar
    • Export Citation
  • 38.

    Pattaro C, Teumer A, Gorski M, Chu AY, Li M, Mijatovic V, et al; ICBP Consortium; AGEN Consortium; CARDIOGRAM; CHARGe-Heart Failure Group; ECHOGen Consortium: Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat Commun 7: 10023, 2016 PubMed

    • Search Google Scholar
    • Export Citation
  • 39.

    Köttgen A, Glazer NL, Dehghan A, Hwang SJ, Katz R, Li M, et al.: Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet 41: 712717, 2009 PubMed

    • Search Google Scholar
    • Export Citation
  • 40.

    Oddsson A, Sulem P, Helgason H, Edvardsson VO, Thorleifsson G, Sveinbjörnsson G, et al.: Common and rare variants associated with kidney stones and biochemical traits. Nat Commun 6: 7975, 2015 PubMed

    • Search Google Scholar
    • Export Citation
  • 41.

    Hernando N: NaPi-IIa interacting partners and their (un)known functional roles. Pflugers Arch 471: 6782, 2019 PubMed

  • 42.

    Karim Z, Gérard B, Bakouh N, Alili R, Leroy C, Beck L, et al.: NHERF1 mutations and responsiveness of renal parathyroid hormone. N Engl J Med 359: 11281135, 2008 PubMed

    • Search Google Scholar
    • Export Citation
  • 43.

    Cebeci AN, Zou M, BinEssa HA, Alzahrani AS, Al-Rijjal RA, Al-Enezi AF, et al.: Mutation of SGK3, a novel regulator of renal phosphate transport, causes autosomal dominant hypophosphatemic rickets. J Clin Endocrinol Metab 105: dgz260, 2020

    • Search Google Scholar
    • Export Citation
  • 44.

    Bhandaru M, Kempe DS, Rotte A, Capuano P, Pathare G, Sopjani M, et al.: Decreased bone density and increased phosphaturia in gene-targeted mice lacking functional serum- and glucocorticoid-inducible kinase 3. Kidney Int 80: 6167, 2011 PubMed

    • Search Google Scholar
    • Export Citation
  • 45.

    Marcucci G, Brandi ML: Congenital conditions of hypophosphatemia expressed in adults. Calcif Tissue Int 108: 91103, 2021 PubMed

  • 46.

    Klootwijk ED, Reichold M, Unwin RJ, Kleta R, Warth R, Bockenhauer D: Renal Fanconi syndrome: Taking a proximal look at the nephron. Nephrol Dial Transplant 30: 14561460, 2015 PubMed

    • Search Google Scholar
    • Export Citation
  • 47.

    Hall AM, Bass P, Unwin RJ: Drug-induced renal Fanconi syndrome. QJM 107: 261269, 2014 PubMed

  • 48.

    Florenzano P, Hartley IR, Jimenez M, Roszko K, Gafni RI, Collins MT: Tumor-Induced Osteomalacia. Calcif Tissue Int 108: 128142, 2021 PubMed

    • Search Google Scholar
    • Export Citation
  • 49.

    Baia LC, Heilberg IP, Navis G, de Borst MH; NIGRAM investigators: Phosphate and FGF-23 homeostasis after kidney transplantation. Nat Rev Nephrol 11: 656666, 2015 PubMed

    • Search Google Scholar
    • Export Citation
  • 50.

    Payne RB: Renal tubular reabsorption of phosphate (TmP/GFR): indications and interpretation. Ann Clin Biochem 35: 201206, 1998 PubMed

    • Search Google Scholar
    • Export Citation
  • 51.

    Cirillo M, Ciacci C, De Santo NG: Age, renal tubular phosphate reabsorption, and serum phosphate levels in adults. N Engl J Med 359: 864866, 2008 PubMed

    • Search Google Scholar
    • Export Citation
  • 52.

    Vervloet MG, Sezer S, Massy ZA, Johansson L, Cozzolino M, Fouque D; ERA–EDTA Working Group on Chronic Kidney Disease–Mineral and Bone Disorders and the European Renal Nutrition Working Group: The role of phosphate in kidney disease. Nat Rev Nephrol 13: 2738, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 53.

    Yoo KD, Kang S, Choi Y, Yang SH, Heo NJ, Chin HJ, et al.: Sex, age, and the association of serum phosphorus with all-cause mortality in adults with normal kidney function. Am J Kidney Dis 67: 7988, 2016 PubMed

    • Search Google Scholar
    • Export Citation
  • 54.

    Tonelli M, Curhan G, Pfeffer M, Sacks F, Thadhani R, Melamed ML, et al.: Relation between alkaline phosphatase, serum phosphate, and all-cause or cardiovascular mortality. Circulation 120: 17841792, 2009 PubMed

    • Search Google Scholar
    • Export Citation
  • 55.

    Tonelli M, Sacks F, Pfeffer M, Gao Z, Curhan G; Cholesterol And Recurrent Events Trial Investigators: Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation 112: 26272633, 2005 PubMed

    • Search Google Scholar
    • Export Citation
  • 56.

    Dhingra R, Gona P, Benjamin EJ, Wang TJ, Aragam J, D’Agostino RB Sr, et al.: Relations of serum phosphorus levels to echocardiographic left ventricular mass and incidence of heart failure in the community. Eur J Heart Fail 12: 812818, 2010 PubMed

    • Search Google Scholar
    • Export Citation
  • 57.

    Sim JJ, Bhandari SK, Smith N, Chung J, Liu IL, Jacobsen SJ, et al.: Phosphorus and risk of renal failure in subjects with normal renal function. Am J Med 126: 311318, 2013 PubMed

    • Search Google Scholar
    • Export Citation
  • 58.

    Chang AR, Lazo M, Appel LJ, Gutiérrez OM, Grams ME: High dietary phosphorus intake is associated with all-cause mortality: Results from NHANES III. Am J Clin Nutr 99: 320327, 2014 PubMed

    • Search Google Scholar
    • Export Citation
  • 59.

    Pavik I, Jaeger P, Ebner L, Wagner CA, Petzold K, Spichtig D, et al.: Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrol Dial Transplant 28: 352359, 2013 PubMed

    • Search Google Scholar
    • Export Citation
  • 60.

    Isakova T, Wahl P, Vargas GS, Gutiérrez OM, Scialla J, Xie H, et al.: Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79: 13701378, 2011 PubMed

    • Search Google Scholar
    • Export Citation
  • 61.

    Hu MC, Shiizaki K, Kuro-o M, Moe OW: Fibroblast growth factor 23 and Klotho: Physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol 75: 503533, 2013 PubMed

    • Search Google Scholar
    • Export Citation
  • 62.

    Dhayat NA, Ackermann D, Pruijm M, Ponte B, Ehret G, Guessous I, et al.: Fibroblast growth factor 23 and markers of mineral metabolism in individuals with preserved renal function. Kidney Int 90: 648657, 2016 PubMed

    • Search Google Scholar
    • Export Citation
  • 63.

    Egli-Spichtig D, Imenez Silva PH, Glaudemans B, Gehring N, Bettoni C, Zhang MYH, et al.: Tumor necrosis factor stimulates fibroblast growth factor 23 levels in chronic kidney disease and non-renal inflammation. Kidney Int 96: 890905, 2019 PubMed

    • Search Google Scholar
    • Export Citation
  • 64.

    Durlacher-Betzer K, Hassan A, Levi R, Axelrod J, Silver J, Naveh-Many T: Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease. Kidney Int 94: 315325, 2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 65.

    Simic P, Kim W, Zhou W, Pierce KA, Chang W, Sykes DB, et al.: Glycerol-3-phosphate is an FGF23 regulator derived from the injured kidney. J Clin Invest 130: 15131526, 2020 PubMed

    • Search Google Scholar
    • Export Citation
  • 66.

    Shalhoub V, Shatzen EM, Ward SC, Davis J, Stevens J, Bi V, et al.: FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J Clin Invest 122: 25432553, 2012 PubMed

    • Search Google Scholar
    • Export Citation
  • 67.

    Gutiérrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, et al.: Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359: 584592, 2008 PubMed

    • Search Google Scholar
    • Export Citation
  • 68.

    Marthi A, Donovan K, Haynes R, Wheeler DC, Baigent C, Rooney CM, et al.: Fibroblast growth factor-23 and risks of cardiovascular and noncardiovascular diseases: A meta-analysis. J Am Soc Nephrol 29: 20152027, 2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 69.

    Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, et al.: FGF23 induces left ventricular hypertrophy. J Clin Invest 121: 43934408, 2011 PubMed

    • Search Google Scholar
    • Export Citation
  • 70.

    Wagner CA, Rubio-Aliaga I, Egli-Spichtig D: Fibroblast growth factor 23 in chronic kidney disease: What is its role in cardiovascular disease? Nephrol Dial Transplant 34: 19861990, 2019 PubMed

    • Search Google Scholar
    • Export Citation
  • 71.

    Pastor-Arroyo EM, Gehring N, Krudewig C, Costantino S, Bettoni C, Knöpfel T, et al.: The elevation of circulating fibroblast growth factor 23 without kidney disease does not increase cardiovascular disease risk. Kidney Int 94: 4959, 2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 72.

    Clerin V, Saito H, Filipski KJ, Nguyen AH, Garren J, Kisucka J, et al.: Selective pharmacological inhibition of the sodium-dependent phosphate cotransporter NPT2a promotes phosphate excretion. J Clin Invest 130: 65106522, 2020 PubMed

    • Search Google Scholar
    • Export Citation
  • 73.

    Xue J, Thomas L, Dominguez Rieg JA, Rieg T: Sodium phosphate cotransporter 2a inhibitors: Potential therapeutic uses. Curr Opin Nephrol Hypertens 31: 486492, 2022 PubMed

    • Search Google Scholar
    • Export Citation
  • 74.

    Pergola PE, Rosenbaum DP, Yang Y, Chertow GM: A randomized trial of tenapanor and phosphate binders as a dual-mechanism treatment for hyperphosphatemia in patients on maintenance dialysis (AMPLIFY). JASN 32: 14651473, 2021 PubMed

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 150 150 94
Full Text Views 197 197 140
PDF Downloads 229 229 165