Secondary Hyperparathyroidism and Hyperphosphatemia
By:
Jason R. Stubbs Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas and
Division of Nephrology & Hypertension, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas

Search for other papers by Jason R. Stubbs in
Current site
Google Scholar
PubMed
Close
and
James B. Wetmore Chronic Disease Research Group, Hennepin Healthcare Research Institute, Minneapolis, Minnesota and
Division of Nephrology, Hennepin County Medical Center, and Department of Medicine, University of Minnesota, Minneapolis, Minnesota

Search for other papers by James B. Wetmore in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1.

    Itano Y, Kato S, Tsuboi M, Kasuga H, Tsuruta Y, Sato F, et al.: A prospective, randomized clinical trial of etelcalcetide in patients receiving hemodialysis with secondary hyperparathyroidism (the DUET Trial). Kidney Int Rep 5: 21682177, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Shoji T, Nakatani S, Kabata D, Mori K, Shintani A, Yoshida H, et al.: Comparative effects of etelcalcetide and maxacalcitol on serum calcification propensity in secondary hyperparathyroidism: A randomized clinical trial. Clin J Am Soc Nephrol 16: 599612, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Dörr K, Kammer M, Reindl-Schwaighofer R, Lorenz M, Prikoszovich T, Marculescu R, et al.: Randomized trial of etelcalcetide for cardiac hypertrophy in hemodialysis. Circ Res 128: 16161625, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Karaboyas A, Muenz D, Fuller DS, Desai P, Lin TC, Robinson BM, et al.: Etelcalcetide utilization, dosing titration, and chronic kidney disease-mineral and bone disease (CKD-MBD) marker responses in US hemodialysis patients. Am J Kidney Dis 79: 362373, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Yokoyama K, Fukagawa M, Shigematsu T, Akiba T, Yoshikawa K, Tsuchiya A, et al.: Safety and efficacy of etelcalcetide, an intravenous calcimimetic, for up to 52 weeks in hemodialysis patients with secondary hyperparathyroidism: Results of a post-marketing surveillance in Japan. Clin Exp Nephrol 25: 6679, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Goodman WG, Ward DT, Martin KJ, Drayer D, Moore C, Xu J, et al.: Activation of the calcium receptor by calcimimetic agents is preserved despite modest attenuating effects of hyperphosphatemia. J Am Soc Nephrol 33: 201212, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Centeno PP, Herberger A, Mun HC, Tu C, Nemeth EF, Chang W, et al.: Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nat Commun 10: 4693, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Damrath JG, Moe SM, Wallace JM: Calcimimetics alter periosteal and perilacunar bone matrix composition and material properties in early chronic kidney disease. J Bone Miner Res 37: 12971306, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bernardor J, Flammier S, Ranchin B, Gaillard S, Platel D, Peyruchaud O, et al.: Inhibition of osteoclast differentiation by 1.25-D and the calcimimetic KP2326 reveals 1.25-D resistance in advanced CKD. J Bone Miner Res 35: 22652274, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Díaz-Tocados JM, Rodríguez-Ortiz ME, Almadén Y, Pineda C, Martínez-Moreno JM, Herencia C, et al.: Calcimimetics maintain bone turnover in uremic rats despite the concomitant decrease in parathyroid hormone concentration. Kidney Int 95: 10641078, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Mary A, Objois T, Brazier M, Bennis Y, Boudot C, Lenglet G, et al.: Decreased monocyte calcium sensing receptor expression in patients with chronic kidney disease is associated with impaired monocyte ability to reduce vascular calcification. Kidney Int 99: 13821391, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Imafuku T, Tanaka M, Tokunaga K, Miyamura S, Kato H, Tanaka S, et al.: Effect of cinacalcet on the redox status of albumin in secondary hyperparathyroidism patients receiving hemodialysis. Biol Pharm Bull 43: 15831590, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Fadda G, Germain MJ, Broumand V, Nguyen A, McGarvey N, Gitlin M, et al.: Real-world assessment: Clinical effectiveness and safety of extended-release calcifediol. Am J Nephrol 52: 798807, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Haarhaus M, Evenepoel P; European Renal Osteodystrophy (EUROD) workgroup; Chronic Kidney Disease Mineral and Bone Disorder (CKD-MBD) working group of the European Renal Association–European Dialysis and Transplant Association (ERA-EDTA): Differentiating the causes of adynamic bone in advanced chronic kidney disease informs osteoporosis treatment. Kidney Int 100: 546558, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Chen CL, Chen NC, Wu FZ, Wu MT: Impact of denosumab on cardiovascular calcification in patients with secondary hyperparathyroidism undergoing dialysis: A pilot study. Osteoporos Int 31: 15071516, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ott SM, Malluche HH, Jorgetti V, Elder GJ: Importance of bone turnover for therapeutic decisions in patients with CKD-MBD. Kidney Int 100: 502505, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    van der Plas W, Kruijff S, Sidhu SB, Delbridge LW, Sywak MS, Engelsman AF: Parathyroidectomy for patients with secondary hyperparathyroidism in a changing landscape for the management of end-stage renal disease. Surgery 169: 275281, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Zhang DL, Chen S, Gao MZ, Lin YC, Hong FY, You ZH, et al.: Ultrasound-guided radiofrequency ablation: A new attempt to the treatment of refractory hyperparathyroidism secondary to chronic kidney disease. Kidney Int Rep 7: 282288, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Zhao S, Gan W, Xie W, Cao J, Zhang L, Wen P, et al.: A single-center experience of parathyroidectomy in 1500 cases for secondary hyperparathyroidism: A retrospective study. Ren Fail 44: 2329, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ishani A, Liu J, Wetmore JB, Lowe KA, Do T, Bradbury BD, et al.: Clinical outcomes after parathyroidectomy in a nationwide cohort of patients on hemodialysis. Clin J Am Soc Nephrol 10: 9097, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Williams-Karnesky RL, Krumeich L, Wachtel H, Fraker DL, Wirtalla C, Venuto FA, et al.: Data to inform counseling on parathyroidectomy for secondary hyperparathyroidism of renal origin. Surgery 171: 6368, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Phimphilai M, Inya S, Manosroi W: A predictive risk score to diagnose hypocalcemia after parathyroidectomy in patients with secondary hyperparathyroidism: A 22-year retrospective cohort study. Sci Rep 12: 9548, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Siqueira FR, Oliveira KC, Dominguez WV, Truyts CAM, Moysés RMA, Dos Reis LM, et al.: Effect of parathyroidectomy on bone tissue biomarkers and body composition in patients with chronic kidney disease and secondary hyperparathyroidism. Eur J Clin Nutr 75: 11261133, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Jimeno-Fraile J, Cao H, Sancho-Insenser J, Lorente-Poch L, Sitges-Serra A: Muscle strength, physical performance, and metabolic changes after subtotal parathyroidectomy for secondary hyperparathyroidism. Surgery 169: 846851, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Komaba H, Hamano T, Fujii N, Moriwaki K, Wada A, Masakane I, et al.: Parathyroidectomy vs cinacalcet among patients undergoing hemodialysis. J Clin Endocrinol Metab 107: 20162025, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Saeseow S, Vantanasiri K, Suvikapakornkul R, Sukarayothin T, Apirakkittikul N, Disthabanchong S: Parathyroidectomy is associated with slow progression of vascular calcification in maintenance haemodialysis patients: A propensity score-matched case-control study. Nephrology (Carlton) 27: 355362, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Xu Y, Evans M, Soro M, Barany P, Carrero JJ: Secondary hyperparathyroidism and adverse health outcomes in adults with chronic kidney disease. Clin Kidney J 14: 22132220, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bozic M, Diaz-Tocados JM, Bermudez-Lopez M, Forné C, Martinez C, Fernandez E, et al.: Independent effects of secondary hyperparathyroidism and hyperphosphataemia on chronic kidney disease progression and cardiovascular events: An analysis from the NEFRONA cohort. Nephrol Dial Transplant 37: 663672, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Liu CT, Hsu SC, Hsieh HL, Chen CH, Chen CY, Sue YM, et al.: Parathyroid hormone induces transition of myofibroblasts in arteriovenous fistula and increases maturation failure. Endocrinology 162: bqab044, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Tabibzadeh N, Karaboyas A, Robinson BM, Csomor PA, Spiegel DM, Evenepoel P, et al.: The risk of medically uncontrolled secondary hyperparathyroidism depends on parathyroid hormone levels at haemodialysis initiation. Nephrol Dial Transplant 36: 160169, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Komaba H, Zhao J, Yamamoto S, Nomura T, Fuller DS, McCullough KP, et al.: Secondary hyperparathyroidism, weight loss, and longer term mortality in haemodialysis patients: Results from the DOPPS. J Cachexia Sarcopenia Muscle 12: 855865, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Egstrand S, Nordholm A, Morevati M, Mace ML, Hassan A, Naveh-Many T, et al.: A molecular circadian clock operates in the parathyroid gland and is disturbed in chronic kidney disease associated bone and mineral disorder. Kidney Int 98: 14611475, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Egstrand S, Mace ML, Morevati M, Nordholm A, Engelholm LH, Thomsen JS, et al.: Hypomorphic expression of parathyroid Bmal1 disrupts the internal parathyroid circadian clock and increases parathyroid cell proliferation in response to uremia. Kidney Int 101: 12321250, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, et al.: Diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder: Synopsis of the kidney disease: Improving Global Outcomes 2017 Clinical Practice Guideline Update. Ann Intern Med 168: 422430, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Ruospo M, Palmer SC, Natale P, Craig JC, Vecchio M, Elder GJ, et al.: Phosphate binders for preventing and treating chronic kidney disease-mineral and bone disorder (CKD-MBD). Cochrane Database Syst Rev 8: CD006023, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Scialla JJ, Kendrick J, Uribarri J, Kovesdy CP, Gutiérrez OM, Jimenez EY, et al.: State-of-the-art management of hyperphosphatemia in patients with CKD: An NKF-KDOQI controversies perspective. Am J Kidney Dis 77: 132141, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Sampson M, Faria N, Powell JJ; PEACH study investigators: Efficacy and safety of PT20, an iron-based phosphate binder, for the treatment of hyperphosphataemia: A randomized, double-blind, placebo-controlled, dose-ranging, Phase IIb study in patients with haemodialysis-dependent chronic kidney disease. Nephrol Dial Transplant 36: 13991407, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Larsson TE, Kameoka C, Nakajo I, Taniuchi Y, Yoshida S, Akizawa T, et al.: NPT-IIb inhibition does not improve hyperphosphatemia in CKD. Kidney Int Rep 3: 7380, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Cheng SC, Young DO, Huang Y, Delmez JA, Coyne DW: A randomized, double-blind, placebo-controlled trial of niacinamide for reduction of phosphorus in hemodialysis patients. Clin J Am Soc Nephrol 3: 11311138, 2008 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Young DO, Cheng SC, Delmez JA, Coyne DW: The effect of oral niacinamide on plasma phosphorus levels in peritoneal dialysis patients. Perit Dial Int 29: 562567, 2009 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Ix JH, Isakova T, Larive B, Raphael KL, Raj DS, Cheung AK, et al.: Effects of nicotinamide and lanthanum carbonate on serum phosphate and fibroblast growth factor-23 in CKD: The COMBINE Trial. J Am Soc Nephrol 30: 10961108, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Ketteler M, Wiecek A, Rosenkranz AR, Pasch A, Rekowski J, Hellmann B, et al.: Efficacy and safety of a novel nicotinamide modified-release formulation in the treatment of refractory hyperphosphatemia in patients receiving hemodialysis—A randomized clinical trial. Kidney Int Rep 6: 594604, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Ketteler M, Wiecek A, Rosenkranz AR, Ose C, Rekowski J, Lorenz H, et al.: Modified-release nicotinamide for the treatment of hyperphosphataemia in haemodialysis patients: 52-week efficacy and safety results of the phase III randomised controlled NOPHOS trial [published online ahead of print Jun 25, 2022]. Nephrol Dial Transplant doi:10.1093/ndt/gfac206 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Tsuboi Y, Ohtomo S, Ichida Y, Hagita H, Ozawa K, Iida M, et al.: EOS789, a novel pan-phosphate transporter inhibitor, is effective for the treatment of chronic kidney disease-mineral bone disorder. Kidney Int 98: 343354, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Hill Gallant KM, Stremke ER, Trevino LL, Moorthi RN, Doshi S, Wastney ME, et al.: EOS789, a broad-spectrum inhibitor of phosphate transport, is safe with an indication of efficacy in a phase 1b randomized crossover trial in hemodialysis patients. Kidney Int 99: 12251233, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    King AJ, Siegel M, He Y, Nie B, Wang J, Koo-McCoy S, et al.: Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. Sci Transl Med 10: eaam6474, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Pergola PE, Rosenbaum DP, Yang Y, Chertow GM: A randomized trial of tenapanor and phosphate binders as a dual-mechanism treatment for hyperphosphatemia in patients on maintenance dialysis (AMPLIFY). J Am Soc Nephrol 32: 14651473, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Elias RM, Alvares VRC, Moysés RMA: Phosphate removal during conventional hemodialysis: A decades-old misconception. Kidney Blood Press Res 43: 110114, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Chazot G, Lemoine S, Kocevar G, Kalbacher E, Sappey-Marinier D, Rouvière O, et al.: Intracellular phosphate and ATP depletion measured by magnetic resonance spectroscopy in patients receiving maintenance hemodialysis. J Am Soc Nephrol 32: 229237, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Stremke ER, Trevino L, Doshi S, Moorthi RN, Hill Gallant KM, Moe SM: Postdialysis serum phosphate equilibrium in hemodialysis patients on a controlled diet and no binders. Hemodial Int 26: 255263, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Czaya B, Heitman K, Campos I, Yanucil C, Kentrup D, Westbrook D, et al.: Hyperphosphatemia increases inflammation to exacerbate anemia and skeletal muscle wasting independently of FGF23-FGFR4 signaling. eLife 11: e74782, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Tiong MK, Cai MMX, Toussaint ND, Tan SJ, Pasch A, Smith ER: Effect of nutritional calcium and phosphate loading on calciprotein particle kinetics in adults with normal and impaired kidney function. Sci Rep 12: 7358, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Shiizaki K, Tsubouchi A, Miura Y, Seo K, Kuchimaru T, Hayashi H, et al.: Calcium phosphate microcrystals in the renal tubular fluid accelerate chronic kidney disease progression. J Clin Invest 131: e145693, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Jansson KP, Yu ASL, Stubbs JR: Contribution of phosphate and FGF23 to CKD progression. Curr Opin Nephrol Hypertens 31: 306311, 2022 PubMed

  • 55.

    Toussaint ND, Pedagogos E, Lioufas NM, Elder GJ, Pascoe EM, Badve SV, et al.; IMPROVE-CKD Trial Investigators: A randomized trial on the effect of phosphate reduction on vascular end points in CKD (IMPROVE-CKD). J Am Soc Nephrol 31: 26532666, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Lioufas NM, Pascoe EM, Hawley CM, Elder GJ, Badve SV, Block GA, et al.: Systematic review and meta-analyses of the effects of phosphate-lowering agents in nondialysis CKD. J Am Soc Nephrol 33: 5976, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Simic P, Kim W, Zhou W, Pierce KA, Chang W, Sykes DB, et al.: Glycerol-3-phosphate is an FGF23 regulator derived from the injured kidney. J Clin Invest 130: 15131526, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Courbon G, Francis C, Gerber C, Neuburg S, Wang X, Lynch E, et al.: Lipocalin 2 stimulates bone fibroblast growth factor 23 production in chronic kidney disease. Bone Res 9: 35, 2021 PubMed

    • PubMed
    • Export Citation
  • 59.

    McKnight Q, Jenkins S, Li X, Nelson T, Marlier A, Cantley LG, et al.: IL-1β drives production of FGF-23 at the onset of chronic kidney disease in mice. J Bone Miner Res 35: 13521362, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Akiyama KI, Miura Y, Hayashi H, Sakata A, Matsumura Y, Kojima M, et al.: Calciprotein particles regulate fibroblast growth factor-23 expression in osteoblasts. Kidney Int 97: 702712, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Ni P, Clinkenbeard EL, Noonan ML, Richardville JM, McClintick J, Hato T, et al.: Targeting fibroblast growth factor 23-responsive pathways uncovers controlling genes in kidney mineral metabolism. Kidney Int 99: 598608, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Agoro R, White KE: Anemia and fibroblast growth factor 23 elevation in chronic kidney disease: Homeostatic interactions and emerging therapeutics. Curr Opin Nephrol Hypertens 31: 320325, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Humalda JK, Yeung SMH, Geleijnse JM, Gijsbers L, Riphagen IJ, Hoorn EJ, et al.: Effects of potassium or sodium supplementation on mineral homeostasis: A controlled dietary intervention study. J Clin Endocrinol Metab 105: e3246e3256, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Chen G, Liu Y, Goetz R, Fu L, Jayaraman S, Hu MC, et al.: α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature 553: 461466, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Sharma S, Katz R, Ginsberg C, Bullen A, Vallon V, Thomson S, et al.: Renal clearance of fibroblast growth factor-23 (FGF23) and its fragments in humans. J Bone Miner Res 37: 11701178, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Graves JM, Vallejo JA, Hamill CS, Wang D, Ahuja R, Patel S, et al.: Fibroblast growth factor 23 (FGF23) induces ventricular arrhythmias and prolongs QTc interval in mice in an FGF receptor 4-dependent manner. Am J Physiol Heart Circ Physiol 320: H2283H2294, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Yanucil C, Kentrup D, Campos I, Czaya B, Heitman K, Westbrook D, et al.: Soluble α-klotho and heparin modulate the pathologic cardiac actions of fibroblast growth factor 23 in chronic kidney disease. Kidney Int 102: 261279, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Wang AA, Cai X, Srivastava A, Prasad PV, Sprague SM, Carr J, et al.: Abnormalities in Cardiac Structure and Function among Individuals with CKD: The COMBINE Trial. Kidney360 3: 258268, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Komaba H, Fuller DS, Taniguchi M, Yamamoto S, Nomura T, Zhao J, et al.: Fibroblast growth factor 23 and mortality among prevalent hemodialysis patients in the Japan Dialysis Outcomes and Practice Patterns study. Kidney Int Rep 5: 19561964, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Mehta RC, Cho ME, Cai X, Lee J, Chen J, He J, et al; CRIC Study Investigators: Iron status, fibroblast growth factor 23 and cardiovascular and kidney outcomes in chronic kidney disease. Kidney Int 100: 12921302, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    De Jong MA, Eisenga MF, van Ballegooijen AJ, Beulens JWJ, Vervloet MG, Navis G, et al.: Fibroblast growth factor 23 and new-onset chronic kidney disease in the general population: The Prevention of Renal and Vascular Endstage Disease (PREVEND) study. Nephrol Dial Transplant 36: 121128, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    El Ters M, Lu P, Mahnken JD, Stubbs JR, Zhang S, Wallace DP, et al.: Prognostic value of fibroblast growth factor 23 in autosomal dominant polycystic kidney disease. Kidney Int Rep 6: 953961, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Isakova T, Cai X, Lee J, Mehta R, Zhang X, Yang W, et al; CRIC Study Investigators: Longitudinal evolution of markers of mineral metabolism in patients with CKD: The Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis 75: 235244, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Ishigami J, Grams ME, Michos ED, Lutsey PL, Matsushita K: 25-hydroxyvitamin D, fibroblast growth factor 23, and risk of acute kidney injury over 20 years of follow-up. Kidney Int Rep 6: 12991308, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Desbiens LC, Sidibé A, Ung RV, Mac-Way F: FGF23-Klotho axis and fractures in patients without and with early CKD: A case-cohort analysis of CARTaGENE. J Clin Endocrinol Metab 107: e2502e2512, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Hughes-Austin JM, Katz R, Semba RD, Kritchevsky SB, Bauer DC, Sarnak MJ, et al.: Biomarkers of bone turnover identify subsets of chronic kidney disease patients at higher risk for fracture. J Clin Endocrinol Metab 105: e2903e2911, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 509 394 43
Full Text Views 663 490 39
PDF Downloads 917 665 53