Calcium Regulation and Management of Hypo- and Hypercalcemia
By:
Silvia M. TitanNephrology & Hypertension Division, Mayo Clinic, Rochester, Minnesota
Nephrology Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil

Search for other papers by Silvia M. Titan in
Current site
Google Scholar
PubMed
Close
and
Rosa M. A. MoysésLaboratório de Investigação Médica 16 do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil

Search for other papers by Rosa M. A. Moysés in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1.

    Friedman PA: Mechanisms of renal calcium transport. Exp Nephrol 8: 343350, 2000 10.1159/000020688 PubMed

  • 2.

    Muto S, Hata M, Taniguchi J, Tsuruoka S, Moriwaki K, Saitou M, et al.: Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci USA 107: 80118016, 2010 10.1073/pnas.0912901107 PubMed

    • Search Google Scholar
    • Export Citation
  • 3.

    Curry JN, Yu ASL: Paracellular calcium transport in the proximal tubule and the formation of kidney stones. Am J Physiol Renal Physiol 316: F966F969, 2019 10.1152/ajprenal.00519.2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 4.

    Curry JN, Saurette M, Askari M, Pei L, Filla MB, Beggs MR, et al.: Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J Clin Invest 130: 19481960, 2020 10.1172/JCI127750 PubMed

    • Search Google Scholar
    • Export Citation
  • 5.

    Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, et al.: Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285: 103106, 1999 10.1126/science.285.5424.103 PubMed

    • Search Google Scholar
    • Export Citation
  • 6.

    Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, et al.: Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79: 949957, 2006 10.1086/508617 PubMed

    • Search Google Scholar
    • Export Citation
  • 7.

    Gong Y, Renigunta V, Himmerkus N, Zhang J, Renigunta A, Bleich M, et al.: Claudin-14 regulates renal Ca++ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J 31: 19992012, 2012 10.1038/emboj.2012.49 PubMed

    • Search Google Scholar
    • Export Citation
  • 8.

    Thorleifsson G, Holm H, Edvardsson V, Walters GB, Styrkarsdottir U, Gudbjartsson DF, et al.: Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet 41: 926930, 2009 10.1038/ng.404 PubMed

    • Search Google Scholar
    • Export Citation
  • 9.

    Figueres L, Bruneau S, Prot-Bertoye C, Brideau G, Néel M, Griveau C, et al.: Hypomagnesemia, hypocalcemia, and tubulointerstitial nephropathy caused by claudin-16 autoantibodies. J Am Soc Nephrol 33: 14021410, 2022 10.1681/asn.2022010060 PubMed

    • Search Google Scholar
    • Export Citation
  • 10.

    Gong Y, Hou J: Claudins in barrier and transport function-the kidney. Pflugers Arch 469: 105113, 2017 10.1007/s00424-016-1906-6 PubMed

    • Search Google Scholar
    • Export Citation
  • 11.

    Marneros AG: Magnesium and calcium homeostasis depend on KCTD1 function in the distal nephron. Cell Rep 34: 108616, 2021 10.1016/j.celrep.2020.108616 PubMed

    • Search Google Scholar
    • Export Citation
  • 12.

    Riccardi D, Valenti G: Localization and function of the renal calcium-sensing receptor. Nat Rev Nephrol 12: 414425, 2016 10.1038/nrneph.2016.59 PubMed

    • Search Google Scholar
    • Export Citation
  • 13.

    Bazúa-Valenti S, Rojas-Vega L, Castañeda-Bueno M, Barrera-Chimal J, Bautista R, Cervantes-Pérez LG, et al.: The calcium-sensing receptor increases activity of the renal NCC through the WNK4-SPAK pathway. J Am Soc Nephrol 29: 18381848, 2018 10.1681/ASN.2017111155 PubMed

    • Search Google Scholar
    • Export Citation
  • 14.

    van Megen WH, Tan RSG, Alexander RT, Dimke H: Differential parathyroid and kidney Ca2+-sensing receptor activation in autosomal dominant hypocalcemia 1. EBioMedicine 78: 103947, 2022 10.1016/j.ebiom.2022.103947 PubMed

    • Search Google Scholar
    • Export Citation
  • 15.

    Stevenson M, Pagnamenta AT, Mack HG, et al.: The Bartter-Gitelman spectrum: 50-year follow-up with revision of diagnosis after whole-genome sequencing. J Endocr Soc 6: bvac079, 2022 10.1210/jendso/bvac079PubMed

    • Search Google Scholar
    • Export Citation
  • 16.

    Talmage RV, Matthews JL, Mobley HT, Lester GE: Calcium homeostasis and bone surface proteins, a postulated vital process for plasma calcium control. J Musculoskelet Neuronal Interact 3: 194200, 2003 PubMed

    • Search Google Scholar
    • Export Citation
  • 17.

    Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R, et al.: FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J 33: 229246, 2014 10.1002/embj.201284188 PubMed

    • Search Google Scholar
    • Export Citation
  • 18.

    Renkema KY, Nijenhuis T, van der Eerden BC, van der Kemp AW, Weinans H, van Leeuwen JP, et al.: Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice. J Am Soc Nephrol 16: 31883195, 2005 10.1681/ASN.2005060632 PubMed

    • Search Google Scholar
    • Export Citation
  • 19.

    Baron R, Kneissel M: WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat Med 19: 179192, 2013 10.1038/nm.3074 PubMed

    • Search Google Scholar
    • Export Citation
  • 20.

    Ryan ZC, Ketha H, McNulty MS, McGee-Lawrence M, Craig TA, Grande JP, et al.: Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proc Natl Acad Sci USA 110: 61996204, 2013 10.1073/pnas.1221255110 PubMed

    • Search Google Scholar
    • Export Citation
  • 21.

    van der Wijst J, Tutakhel OAZ, Bos C, Danser AHJ, Hoorn EJ, Hoenderop JGJ, et al.: Effects of a high-sodium/low-potassium diet on renal calcium, magnesium, and phosphate handling. Am J Physiol Renal Physiol 315: F110F122, 2018 10.1152/ajprenal.00379.2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 22.

    Bushinsky DA, Krieger NS: Effects of acid on bone. Kidney Int 101: 11601170, 2022 10.1016/j.kint.2022.02.032 PubMed

  • 23.

    Imenez Silva PH, Katamesh-Benabbas C, Chan K, Pastor Arroyo EM, Knöpfel T, Bettoni C, et al.: The proton-activated ovarian cancer G protein-coupled receptor 1 (OGR1) is responsible for renal calcium loss during acidosis. Kidney Int 97: 920933, 2020 10.1016/j.kint.2019.12.006 PubMed

    • Search Google Scholar
    • Export Citation
  • 24.

    Khalil R, Kim NR, Jardi F, Vanderschueren D, Claessens F, Decallonne B: Sex steroids and the kidney: Role in renal calcium and phosphate handling. Mol Cell Endocrinol 465: 6172, 2018 10.1016/j.mce.2017.11.011 PubMed

    • Search Google Scholar
    • Export Citation
  • 25.

    Hsu YJ, Dimke H, Schoeber JP, Hsu SC, Lin SH, Chu P, et al.: Testosterone increases urinary calcium excretion and inhibits expression of renal calcium transport proteins. Kidney Int 77: 601608, 2010 10.1038/ki.2009.522 PubMed

    • Search Google Scholar
    • Export Citation
  • 26.

    Lin PH, Jian CY, Chou JC, Chen CW, Chen CC, Soong C, et al.: Induction of renal senescence marker protein-30 (SMP30) expression by testosterone and its contribution to urinary calcium absorption in male rats. Sci Rep 6: 32085, 2016 10.1038/srep32085 PubMed

    • Search Google Scholar
    • Export Citation
  • 27.

    Beggs MR, Appel I, Svenningsen P, Skjødt K, Alexander RT, Dimke H: Expression of transcellular and paracellular calcium and magnesium transport proteins in renal and intestinal epithelia during lactation. Am J Physiol Renal Physiol 313: F629F640, 2017 10.1152/ajprenal.00680.2016 PubMed

    • Search Google Scholar
    • Export Citation
  • 28.

    Rutkowski JM, Pastor J, Sun K, Park SK, Bobulescu IA, Chen CT, et al.: Adiponectin alters renal calcium and phosphate excretion through regulation of klotho expression. Kidney Int 91: 324337, 2017 10.1016/j.kint.2016.09.016 PubMed

    • Search Google Scholar
    • Export Citation
  • 29.

    Vall-Palomar M, Madariaga L, Ariceta G: Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Pediatr Nephrol 36: 30453055, 2021 10.1007/s00467-021-04968-2 PubMed

    • Search Google Scholar
    • Export Citation
  • 30.

    Vall-Palomar M, Burballa C, Claverie-Martín F, Meseguer A, Ariceta G: Heterogeneity is a common ground in familial hypomagnesemia with hypercalciuria and nephrocalcinosis caused by CLDN19 gene mutations. J Nephrol 34: 20532062, 2021 10.1007/s40620-021-01054-6 PubMed

    • Search Google Scholar
    • Export Citation
  • 31.

    Hou J, Renigunta V, Nie M, Sunq A, Himmerkus N, Quintanova C, et al.: Phosphorylated claudin-16 interacts with Trpv5 and regulates transcellular calcium transport in the kidney. Proc Natl Acad Sci USA 116: 1917619186, 2019 10.1073/pnas.1902042116 PubMed

    • Search Google Scholar
    • Export Citation
  • 32.

    Kang TS, Siegel LM: Congenital macular scars in siblings from CLDN19 mutations. J AAPOS 25: 316318, 2021 10.1016/j.jaapos.2021.05.008 PubMed

    • Search Google Scholar
    • Export Citation
  • 33.

    Eckardt KU, Alper SL, Antignac C, Bleyer AJ, Chauveau D, Dahan K, et al; Kidney Disease: Improving Global Outcomes: Autosomal dominant tubulointerstitial kidney disease: Diagnosis, classification, and management: A KDIGO consensus report. Kidney Int 88: 676683, 2015 10.1038/ki.2015.28 PubMed

    • Search Google Scholar
    • Export Citation
  • 34.

    Kompatscher A, de Baaij JHF, Aboudehen K, Farahani S, van Son LHJ, Milatz S, et al.: Transcription factor HNF1β regulates expression of the calcium-sensing receptor in the thick ascending limb of the kidney. Am J Physiol Renal Physiol 315: F27F35, 2018 10.1152/ajprenal.00601.2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 35.

    Sicking M, Živná M, Bhadra P, Barešová V, Tirincsi A, Hadzibeganovic D, et al.: Phenylbutyrate rescues the transport defect of the Sec61α mutations V67G and T185A for renin. Life Sci Alliance 5: e202101150, 2022 10.26508/lsa.202101150 PubMed

    • Search Google Scholar
    • Export Citation
  • 36.

    Wu M, Feng Y, Ye GX, Han YC, Wang SS, Ni HF, et al.: Calcium-sensing receptor activation attenuates collagen expression in renal proximal tubular epithelial cells. Am J Physiol Renal Physiol 316: F1006F1015, 2019 10.1152/ajprenal.00413.2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 37.

    Mai X, Shang J, Liang S, Yu B, Yuan J, Lin Y, et al.: Blockade of orai1 store-operated calcium entry protects against renal fibrosis. J Am Soc Nephrol 27: 30633078, 2016 10.1681/ASN.2015080889 PubMed

    • Search Google Scholar
    • Export Citation
  • 38.

    Hering L, Rahman M, Hoch H, Markó L, Yang G, Reil A, et al.: α2A-adrenoceptors modulate renal sympathetic neurotransmission and protect against hypertensive kidney disease. J Am Soc Nephrol 31: 783798, 2020 10.1681/ASN.2019060599 PubMed

    • Search Google Scholar
    • Export Citation
  • 39.

    Mishima K, Nakasatomi M, Takahashi S, Ikeuchi H, Sakairi T, Kaneko Y, et al.: Attenuation of renal fibrosis after unilateral ureteral obstruction in mice lacking the N-type calcium channel. PLoS One 14: e0223496, 2019 10.1371/journal.pone.0223496 PubMed

    • Search Google Scholar
    • Export Citation
  • 40.

    Zhao X, Kong Y, Liang B, Xu J, Lin Y, Zhou N, et al.: Mechanosensitive Piezo1 channels mediate renal fibrosis. JCI Insight 7: e152330, 2022 10.1172/jci.insight.152330 PubMed

    • Search Google Scholar
    • Export Citation
  • 41.

    Liu X, Tang J, Chen XZ: Role of PKD2 in the endoplasmic reticulum calcium homeostasis. Front Physiol 13: 962571, 2022 10.3389/fphys.2022.962571 PubMed

    • Search Google Scholar
    • Export Citation
  • 42.

    Di Mise A, Tamma G, Ranieri M, Centrone M, van den Heuvel L, Mekahli D, et al.: Activation of calcium-sensing receptor increases intracellular calcium and decreases cAMP and mTOR in PKD1 deficient cells. Sci Rep 8: 5704, 2018 10.1038/s41598-018-23732-5 PubMed

    • Search Google Scholar
    • Export Citation
  • 43.

    Di Mise A, Ranieri M, Centrone M, Venneri M, Tamma G, Valenti D, et al.: Activation of the calcium-sensing receptor corrects the impaired mitochondrial energy status observed in renal polycystin-1 knockdown cells modeling autosomal dominant polycystic kidney disease. Front Mol Biosci 5: 77, 2018 10.3389/fmolb.2018.00077 PubMed

    • Search Google Scholar
    • Export Citation
  • 44.

    Li Z, Zhou J, Li Y, Yang F, Lian X, Liu W: Mitochondrial TRPC3 promotes cell proliferation by regulating the mitochondrial calcium and metabolism in renal polycystin-2 knockdown cells. Int Urol Nephrol 51: 10591070, 2019 10.1007/s11255-019-02149-7 PubMed

    • Search Google Scholar
    • Export Citation
  • 45.

    Di Mise A, Wang X, Ye H, Pellegrini L, Torres VE, Valenti G: Pre-clinical evaluation of dual targeting of the GPCRs CaSR and V2R as therapeutic strategy for autosomal dominant polycystic kidney disease. FASEB J 35: e21874, 2021 10.1096/fj.202100774R PubMed

    • Search Google Scholar
    • Export Citation
  • 46.

    Ning B, Guo C, Kong A, Li K, Xie Y, Shi H, et al.: Calcium signaling mediates cell death and crosstalk with autophagy in kidney disease. Cells 10: 3204, 2021 10.3390/cells10113204 PubMed

    • Search Google Scholar
    • Export Citation
  • 47.

    Ilatovskaya DV, Blass G, Palygin O, Levchenko V, Pavlov TS, Grzybowski MN, et al.: A NOX4/TRPC6 pathway in podocyte calcium regulation and renal damage in diabetic kidney disease. J Am Soc Nephrol 29: 19171927, 2018 10.1681/ASN.2018030280 PubMed

    • Search Google Scholar
    • Export Citation
  • 48.

    Palygin O, Klemens CA, Isaeva E, Levchenko V, Spires DR, Dissanayake LV, et al.: Characterization of purinergic receptor 2 signaling in podocytes from diabetic kidneys. iScience 24: 102528, 2021 10.1016/j.isci.2021.102528 PubMed

    • Search Google Scholar
    • Export Citation
  • 49.

    Vasco RFV, Takayama L, Pereira RMR, Moyses RMA, Elias RM: Effects of diuretics furosemide and hydrochlorothiazide on CKD-MBD: A prospective randomized study. Bone Rep 14: 100746, 2021 10.1016/j.bonr.2021.100746 PubMed

    • Search Google Scholar
    • Export Citation
  • 50.

    Shroff R, Lalayiannis AD, Fewtrell M, Schmitt CP, Bayazit A, Askiti V, et al.: Naturally occurring stable calcium isotope ratios are a novel biomarker of bone calcium balance in chronic kidney disease. Kidney Int 102: 613623, 2022 10.1016/j.kint.2022.04.024 PubMed

    • Search Google Scholar
    • Export Citation
  • 51.

    Das S, Clézardin P, Kamel S, Brazier M, Mentaverri R: The CaSR in pathogenesis of breast cancer: A new target for early stage bone metastases. Front Oncol 10: 69, 2020 10.3389/fonc.2020.00069 PubMed

    • Search Google Scholar
    • Export Citation
  • 52.

    Jeong S, Kim JH, Kim MG, Han N, Kim IW, Kim T, et al.: Genetic polymorphisms of CASR and cancer risk: Evidence from meta-analysis and HuGE review. OncoTargets Ther 9: 655669, 2016 10.2147/ott.S97602 PubMed

    • Search Google Scholar
    • Export Citation
  • 53.

    Orduña-Castillo LB, Del-Río-Robles JE, García-Jiménez I, Zavala-Barrera C, Beltrán-Navarro YM, Hidalgo-Moyle JJ, et al.: Calcium sensing receptor stimulates breast cancer cell migration via the Gβγ-AKT-mTORC2 signaling pathway. J Cell Commun Signal 16: 239252, 2022 10.1007/s12079-021-00662-y PubMed

    • Search Google Scholar
    • Export Citation
  • 54.

    Frees S, Breuksch I, Haber T, Bauer HK, Chavez-Munoz C, Raven P, et al.: Calcium-sensing receptor (CaSR) promotes development of bone metastasis in renal cell carcinoma. Oncotarget 9: 1576615779, 2018 10.18632/oncotarget.24607 PubMed

    • Search Google Scholar
    • Export Citation
  • 55.

    Rosner MH: Hypocalcemia in a patient with cancer. Clin J Am Soc Nephrol 12: 696699, 2017 10.2215/cjn.13241216 PubMed

  • 56.

    Miyaoka D, Imanishi Y, Ohara M, Hayashi N, Nagata Y, Yamada S, et al.: Impaired residual renal function predicts denosumab-induced serum calcium decrement as well as increment of bone mineral density in non-severe renal insufficiency. Osteoporos Int 30: 241249, 2019 10.1007/s00198-018-4688-1 PubMed

    • Search Google Scholar
    • Export Citation
  • 57.

    Broadwell A, Chines A, Ebeling PR, Franek E, Huang S, Smith S, et al.: Denosumab safety and efficacy among participants in the FREEDOM extension study with mild to moderate chronic kidney disease. J Clin Endocrinol Metab 106: 397409, 2021 10.1210/clinem/dgaa851 PubMed

    • Search Google Scholar
    • Export Citation
  • 58.

    Hiramatsu R, Ubara Y, Sawa N, Sakai A: Hypocalcemia and bone mineral changes in hemodialysis patients with low bone mass treated with denosumab: A 2-year observational study. Nephrol Dial Transplant 36: 19001907, 2021 10.1093/ndt/gfaa359 PubMed

    • Search Google Scholar
    • Export Citation
  • 59.

    Thongprayoon C, Acharya P, Acharya C, Chenbhanich J, Bathini T, Boonpheng B, et al.: Hypocalcemia and bone mineral density changes following denosumab treatment in end-stage renal disease patients: A meta-analysis of observational studies. Osteoporos Int 29: 17371745, 2018 10.1007/s00198-018-4533-6 PubMed

    • Search Google Scholar
    • Export Citation
  • 60.

    Thongprayoon C, Acharya P, Aeddula NR, Torres-Ortiz A, Bathini T, Sharma K, et al.: Effects of denosumab on bone metabolism and bone mineral density in kidney transplant patients: A systematic review and meta-analysis. Arch Osteoporos 14: 35, 2019 10.1007/s11657-019-0587-0 PubMed

    • Search Google Scholar
    • Export Citation
  • 61.

    Nanmoku K, Shinzato T, Kubo T, Shimizu T, Yagisawa T: Effects of denosumab on hypercalcemia and bone mineral density loss in kidney transplant recipients. Clin Nephrol 92: 18, 2019 10.5414/CN109723 PubMed

    • Search Google Scholar
    • Export Citation
  • 62.

    Kanbayashi Y, Sakaguchi K, Hongo F, Ishikawa T, Tabuchi Y, Ukimura O, et al.: Predictors for development of denosumab-induced hypocalcaemia in cancer patients with bone metastases determined by ordered logistic regression analysis. Sci Rep 11: 978, 2021 10.1038/s41598-020-80243-y PubMed

    • Search Google Scholar
    • Export Citation
  • 63.

    Manohar S, Kompotiatis P, Thongprayoon C, Cheungpasitporn W, Herrmann J, Herrmann SM: Programmed cell death protein 1 inhibitor treatment is associated with acute kidney injury and hypocalcemia: Meta-analysis. Nephrol Dial Transplant 34: 108117, 2019 10.1093/ndt/gfy105 PubMed

    • Search Google Scholar
    • Export Citation
  • 64.

    Uppal NN, Workeneh BT, Rondon-Berrios H, Jhaveri KD: Electrolyte and acid-base disorders associated with cancer immunotherapy. Clin J Am Soc Nephrol 17: 922933, 2022 10.2215/cjn.14671121 PubMed

    • Search Google Scholar
    • Export Citation
  • 65.

    Nalluru SS, Piranavan P, Ning Y, Ackula H, Siddiqui AD, Trivedi N: Hypocalcemia with immune checkpoint inhibitors: The disparity among various reports. Int J Endocrinol 2020: 7459268, 2020 10.1155/2020/7459268 PubMed

    • Search Google Scholar
    • Export Citation
  • 66.

    Yu ST, Ge JN, Luo JY, Wei ZG, Sun BH, Lei ST: Treatment-related adverse effects with TKIs in patients with advanced or radioiodine refractory differentiated thyroid carcinoma: A systematic review and meta-analysis. Cancer Manag Res 11: 15251532, 2019 10.2147/cmar.S191499 PubMed

    • Search Google Scholar
    • Export Citation
  • 67.

    Berends AMA, van der Horst-Schrivers ANA, Oosting SF, Kapiteijn EW, de Groot JWB, Links TP: Hypocalcemia induced by tyrosine kinase inhibitors: Targeted treatment with ‘untargeted’ side effects. Acta Oncol 59: 726729, 2020 10.1080/0284186x.2020.1726455 PubMed

    • Search Google Scholar
    • Export Citation
  • 68.

    Ho LY, Wong PN, Sin HK, Wong YY, Lo KC, Chan SF, et al.: Risk factors and clinical course of hungry bone syndrome after total parathyroidectomy in dialysis patients with secondary hyperparathyroidism. BMC Nephrol 18: 12, 2017 10.1186/s12882-016-0421-5 PubMed

    • Search Google Scholar
    • Export Citation
  • 69.

    Ge Y, Yang G, Wang N, Zha X, Yu X, Mao H, et al.: Bone metabolism markers and hungry bone syndrome after parathyroidectomy in dialysis patients with secondary hyperparathyroidism. Int Urol Nephrol 51: 14431449, 2019 10.1007/s11255-019-02217-y PubMed

    • Search Google Scholar
    • Export Citation
  • 70.

    Jain N, Reilly RF: Hungry bone syndrome. Curr Opin Nephrol Hypertens 26: 250255, 2017 10.1097/MNH.0000000000000327 PubMed

  • 71.

    Gao D, Lou Y, Cui Y, Liu S, Cui W, Sun G: Risk factors for hypocalcemia in dialysis patients with refractory secondary hyperparathyroidism after parathyroidectomy: A meta-analysis. Ren Fail 44: 503512, 2022 10.1080/0886022x.2022.2048856 PubMed

    • Search Google Scholar
    • Export Citation
  • 72.

    Zhao S, Gan W, Xie W, Cao J, Zhang L, Wen P, et al.: A single-center experience of parathyroidectomy in 1500 cases for secondary hyperparathyroidism: A retrospective study. Ren Fail 44: 2329, 2022 10.1080/0886022x.2021.2016445 PubMed

    • Search Google Scholar
    • Export Citation
  • 73.

    Sun Y, Tian B, Sheng Z, Wan P, Xu T, Yao L: Efficacy and safety of cinacalcet compared with other treatments for secondary hyperparathyroidism in patients with chronic kidney disease or end-stage renal disease: A meta-analysis. BMC Nephrol 21: 316, 2020 10.1186/s12882-019-1639-9 PubMed

    • Search Google Scholar
    • Export Citation
  • 74.

    Bernardor J, Flammier S, Salles JP, Amouroux C, Castanet M, Lienhardt A, et al.: Off-label use of cinacalcet in pediatric primary hyperparathyroidism: A French multicenter experience. Front Pediatr 10: 926986, 2022 10.3389/fped.2022.926986 PubMed

    • Search Google Scholar
    • Export Citation
  • 75.

    Sheerah AA, Al-Ahmed RA, El-Desoky SM, Alhasan KA, Albanna AS, Shalaby MA, et al.: Cinacalcet for severe secondary hyperparathyroidism in children with end-stage kidney disease. Saudi J Kidney Dis Transpl 32: 16281636, 2021 10.4103/1319-2442.352423 PubMed

    • Search Google Scholar
    • Export Citation
  • 76.

    Wang AX, Liu S, Montez-Rath ME, Chertow GM, Lenihan CR: Parathyroidectomy and cinacalcet use in medicare-insured kidney transplant recipients. Am J Kidney Dis 81: 270280.e1, 2023 10.1053/j.ajkd.2022.07.015 PubMed

    • Search Google Scholar
    • Export Citation
  • 77.

    Floege J, Tsirtsonis K, Iles J, Drueke TB, Chertow GM, Parfrey P: Incidence, predictors and therapeutic consequences of hypocalcemia in patients treated with cinacalcet in the EVOLVE trial. Kidney Int 93: 14751482, 2018 10.1016/j.kint.2017.12.014 PubMed

    • Search Google Scholar
    • Export Citation
  • 78.

    Palmer SC, Mavridis D, Johnson DW, Tonelli M, Ruospo M, Strippoli GFM: Comparative effectiveness of calcimimetic agents for secondary hyperparathyroidism in adults: A systematic review and network meta-analysis. Am J Kidney Dis 76: 321330, 2020 10.1053/j.ajkd.2020.02.439 PubMed

    • Search Google Scholar
    • Export Citation
  • 79.

    Louie KS, Erhard C, Wheeler DC, Stenvinkel P, Fouqueray B, Floege J: Cinacalcet-induced hypocalcemia in a cohort of European haemodialysis patients: Predictors, therapeutic approaches and outcomes. J Nephrol 33: 803816, 2020 10.1007/s40620-019-00686-z PubMed

    • Search Google Scholar
    • Export Citation
  • 80.

    Evenepoel P, Shroff R: Facing cinacalcet-induced hypocalcemia: Sit back and relax? Kidney Int 93: 12751277, 2018 10.1016/j.kint.2018.01.038 PubMed

    • Search Google Scholar
    • Export Citation
  • 81.

    Ok E, Asci G, Bayraktaroglu S, Toz H, Ozkahya M, Yilmaz M, et al.: Reduction of dialysate calcium level reduces progression of coronary artery calcification and improves low bone turnover in patients on hemodialysis. J Am Soc Nephrol 27: 24752486, 2016 10.1681/ASN.2015030268 PubMed

    • Search Google Scholar
    • Export Citation
  • 82.

    Yoshikawa M, Takase O, Tsujimura T, Sano E, Hayashi M, Takato T, et al.: Long-term effects of low calcium dialysates on the serum calcium levels during maintenance hemodialysis treatments: A systematic review and meta-analysis. Sci Rep 8: 5310, 2018 10.1038/s41598-018-23658-y PubMed

    • Search Google Scholar
    • Export Citation
  • 83.

    Brunelli SM, Sibbel S, Do TP, Cooper K, Bradbury BD: Facility dialysate calcium practices and clinical outcomes among patients receiving hemodialysis: A retrospective observational study. Am J Kidney Dis 66: 655665, 2015 10.1053/j.ajkd.2015.03.038 PubMed

    • Search Google Scholar
    • Export Citation
  • 84.

    Kelly YP, Sharma S, Mothi SS, McCausland FR, Mendu ML, McMahon GM, et al.: Hypocalcemia is associated with hypotension during CRRT: A secondary analysis of the Acute Renal Failure Trial Network Study. J Crit Care 65: 261267, 2021 10.1016/j.jcrc.2021.07.008 PubMed

    • Search Google Scholar
    • Export Citation
  • 85.

    Wen Y, Gan H, Li Z, Sun X, Xiong Y, Xia Y: Safety of low-calcium dialysate and its effects on coronary artery calcification in patients undergoing maintenance hemodialysis. Sci Rep 8: 5941, 2018 10.1038/s41598-018-24397-w PubMed

    • Search Google Scholar
    • Export Citation
  • 86.

    Azer SM, Vaughan LE, Tebben PJ, Sas DJ. 24-Hydroxylase deficiency due to CYP24A1 Sequence variants: Comparison with other vitamin D-mediated hypercalcemia disorders. J Endocr Soc 5: bvab119, 2021 10.1210/jendso/bvab119 PubMed

    • Search Google Scholar
    • Export Citation
  • 87.

    Ogawa M, Morikawa M, Kobatake M, Murakami T, Yamamoto Y, Watanabe R, et al.: Hypercalcemia associated with the ectopic expression of 25-hydroxyvitamin D3-1α-hydroxylase in diffuse large B-cell lymphoma. Intern Med 61: 24892495, 2022 10.2169/internalmedicine.8933-21 PubMed

    • Search Google Scholar
    • Export Citation
  • 88.

    Goldner E, Fingeret A: Parathyroid carcinoma: A National Cancer Database analysis. J Surg Res 281: 5762, 2023 10.1016/j.jss.2022.08.017 PubMed

    • Search Google Scholar
    • Export Citation
  • 89.

    Quinn CD, Chaudhary F, Gould-Simon A, Chen B, Bhandal HS, Chaudhary U: A case of a rare parathyroid hormone (PTH)-producing neuroendocrine tumor. Am J Case Rep 23: e935783, 2022 10.12659/ajcr.935783 PubMed

    • Search Google Scholar
    • Export Citation
  • 90.

    Watson AL, Matic M, Robertson T, Stewart AGA: Microsporidial myositis, keratitis and hypercalcaemia in a cystic fibrosis lung transplant recipient. BMJ Case Rep 15: e250643, 2022 10.1136/bcr-2022-250643 PubMed

    • Search Google Scholar
    • Export Citation
  • 91.

    Vallon F, Meier C, Gautier E, Wahl P: The incidence of severe hypercalcaemia-induced mental status changes in patients treated with antibiotic-loaded calcium sulphate depot for orthopaedic infections. J Clin Med 11: 4900, 2022 10.3390/jcm11164900 PubMed

    • Search Google Scholar
    • Export Citation
  • 92.

    Friedmann DP, Kurian A, Fitzpatrick RE: Delayed granulomatous reactions to facial cosmetic injections of polymethylmethacrylate microspheres and liquid injectable silicone: A case series. J Cosmet Laser Ther 18: 170173, 2016 10.3109/14764172.2015.1114642 PubMed

    • Search Google Scholar
    • Export Citation
  • 93.

    Manfro AG, Lutzky M, Dora JM, Kalil MAS, Manfro RC: Case reports of hypercalcemia and chronic renal disease due to cosmetic injections of polymethylmethacrylate (PMMA). J Bras Nefrol. Aug 10 2020;doi:10.1590/2175-8239-JBN-2020-0044

    • Search Google Scholar
    • Export Citation
  • 94.

    Tachamo N, Donato A, Timilsina B, Nazir S, Lohani S, Dhital R, et al.: Hypercalcemia associated with cosmetic injections: A systematic review. Eur J Endocrinol 178: 425430, 2018 10.1530/EJE-17-0938 PubMed

    • Search Google Scholar
    • Export Citation
  • 95.

    Manfro AG, Lutzky M, Dora JM, Kalil MAS, Manfro RC: Case reports of hypercalcemia and chronic renal disease due to cosmetic injections of polymethylmethacrylate (PMMA). J Bras Nefrol 43: 288292, 2021 10.1590/2175-8239-jbn-2020-0044 PubMed

    • Search Google Scholar
    • Export Citation
  • 96.

    Stewart AF, Adler M, Byers CM, Segre GV, Broadus AE: Calcium homeostasis in immobilization: An example of resorptive hypercalciuria. N Engl J Med 306: 11361140, 1982 10.1056/NEJM198205133061903 PubMed

    • Search Google Scholar
    • Export Citation
  • 97.

    Spatz JM, Fields EE, Yu EW, Divieti Pajevic P, Bouxsein ML, Sibonga JD, et al.: Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab 97: E1736E1740, 2012 10.1210/jc.2012-1579 PubMed

    • Search Google Scholar
    • Export Citation
  • 98.

    Osipov B, Emami AJ, Christiansen BA: Systemic bone loss after fracture. Clin Rev Bone Miner Metab 16: 116130, 2018 10.1007/s12018-018-9253-0 PubMed

    • Search Google Scholar
    • Export Citation
  • 99.

    Wang PL, Meyer MM, Orloff SL, Anderson S: Bone resorption and “relative” immobilization hypercalcemia with prolonged continuous renal replacement therapy and citrate anticoagulation. Am J Kidney Dis 44: 11101114, 2004 10.1053/j.ajkd.2004.09.001 PubMed

    • Search Google Scholar
    • Export Citation
  • 100.

    Madureira RM, Callas SH, Caires RA, Ferraz Crispilho S, Ayroza Galvão PC, Moysés RMA: Continuous renal replacement therapy might mask immobilization-induced hypercalcemia in critically ill patients. Blood Purif 49: 129131, 2020 10.1159/000502679 PubMed

    • Search Google Scholar
    • Export Citation
  • 101.

    Berktaş BM, Gökçek A, Hoca NT, Koyuncu A: COVID-19 illness and treatment decrease bone mineral density of surviving hospitalized patients. Eur Rev Med Pharmacol Sci 26: 30463056, 2022 10.26355/eurrev_202204_28636 PubMed

    • Search Google Scholar
    • Export Citation
  • 102.

    Mesland JB, Collienne C, Laterre PF, Hantson P: Immobilization-related hypercalcemia in a COVID-19 patient with prolonged intensive care unit stay. Am J Phys Med Rehabil 101: 6163, 2022 10.1097/phm.0000000000001907 PubMed

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 120 120 60
Full Text Views 134 134 96
PDF Downloads 182 182 128