Silvia M. TitanNephrology & Hypertension Division, Mayo Clinic, Rochester, Minnesota Nephrology Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
Rosa M. A. MoysésLaboratório de Investigação Médica 16 do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
MutoS, HataM, TaniguchiJ, TsuruokaS, MoriwakiK, SaitouM, et al.: Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci USA107: 8011–8016, 201010.1073/pnas.0912901107PubMed
MutoS, HataM, TaniguchiJ, TsuruokaS, MoriwakiK, SaitouM, et al.: Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci USA 107: 8011–8016, 201010.1073/pnas.0912901107PubMed)| false
CurryJN, YuASL: Paracellular calcium transport in the proximal tubule and the formation of kidney stones. Am J Physiol Renal Physiol316: F966–F969, 201910.1152/ajprenal.00519.2018PubMed
CurryJN, YuASL: Paracellular calcium transport in the proximal tubule and the formation of kidney stones. Am J Physiol Renal Physiol 316: F966–F969, 201910.1152/ajprenal.00519.2018PubMed)| false
CurryJN, SauretteM, AskariM, PeiL, FillaMB, BeggsMR, et al.: Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J Clin Invest130: 1948–1960, 202010.1172/JCI127750PubMed
CurryJN, SauretteM, AskariM, PeiL, FillaMB, BeggsMR, et al.: Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J Clin Invest 130: 1948–1960, 202010.1172/JCI127750PubMed)| false
KonradM, SchallerA, SeelowD, PandeyAV, WaldeggerS, LesslauerA, et al.: Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet79: 949–957, 200610.1086/508617PubMed
KonradM, SchallerA, SeelowD, PandeyAV, WaldeggerS, LesslauerA, et al.: Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79: 949–957, 200610.1086/508617PubMed)| false
GongY, ReniguntaV, HimmerkusN, ZhangJ, ReniguntaA, BleichM, et al.: Claudin-14 regulates renal Ca++ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J31: 1999–2012, 201210.1038/emboj.2012.49PubMed
GongY, ReniguntaV, HimmerkusN, ZhangJ, ReniguntaA, BleichM, et al.: Claudin-14 regulates renal Ca++ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J 31: 1999–2012, 201210.1038/emboj.2012.49PubMed)| false
ThorleifssonG, HolmH, EdvardssonV, WaltersGB, StyrkarsdottirU, GudbjartssonDF, et al.: Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet41: 926–930, 200910.1038/ng.404PubMed
ThorleifssonG, HolmH, EdvardssonV, WaltersGB, StyrkarsdottirU, GudbjartssonDF, et al.: Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet 41: 926–930, 200910.1038/ng.404PubMed)| false
MarnerosAG: Magnesium and calcium homeostasis depend on KCTD1 function in the distal nephron. Cell Rep34: 108616, 202110.1016/j.celrep.2020.108616PubMed
MarnerosAG: Magnesium and calcium homeostasis depend on KCTD1 function in the distal nephron. Cell Rep 34: 108616, 202110.1016/j.celrep.2020.108616PubMed)| false
RiccardiD, ValentiG: Localization and function of the renal calcium-sensing receptor. Nat Rev Nephrol12: 414–425, 201610.1038/nrneph.2016.59PubMed
RiccardiD, ValentiG: Localization and function of the renal calcium-sensing receptor. Nat Rev Nephrol 12: 414–425, 201610.1038/nrneph.2016.59PubMed)| false
Bazúa-ValentiS, Rojas-VegaL, Castañeda-BuenoM, Barrera-ChimalJ, BautistaR, Cervantes-PérezLG, et al.: The calcium-sensing receptor increases activity of the renal NCC through the WNK4-SPAK pathway. J Am Soc Nephrol29: 1838–1848, 201810.1681/ASN.2017111155PubMed
Bazúa-ValentiS, Rojas-VegaL, Castañeda-BuenoM, Barrera-ChimalJ, BautistaR, Cervantes-PérezLG, et al.: The calcium-sensing receptor increases activity of the renal NCC through the WNK4-SPAK pathway. J Am Soc Nephrol 29: 1838–1848, 201810.1681/ASN.2017111155PubMed)| false
StevensonM, PagnamentaAT, MackHG, et al.: The Bartter-Gitelman spectrum: 50-year follow-up with revision of diagnosis after whole-genome sequencing. J Endocr Soc6: bvac079, 202210.1210/jendso/bvac079PubMed
StevensonM, PagnamentaAT, MackHG, et al.: The Bartter-Gitelman spectrum: 50-year follow-up with revision of diagnosis after whole-genome sequencing. J Endocr Soc 6: bvac079, 202210.1210/jendso/bvac079PubMed)| false
TalmageRV, MatthewsJL, MobleyHT, LesterGE: Calcium homeostasis and bone surface proteins, a postulated vital process for plasma calcium control. J Musculoskelet Neuronal Interact3: 194–200, 2003PubMed
TalmageRV, MatthewsJL, MobleyHT, LesterGE: Calcium homeostasis and bone surface proteins, a postulated vital process for plasma calcium control. J Musculoskelet Neuronal Interact 3: 194–200, 2003PubMed)| false
RenkemaKY, NijenhuisT, van der EerdenBC, van der KempAW, WeinansH, van LeeuwenJP, et al.: Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice. J Am Soc Nephrol16: 3188–3195, 200510.1681/ASN.2005060632PubMed
RenkemaKY, NijenhuisT, van der EerdenBC, van der KempAW, WeinansH, van LeeuwenJP, et al.: Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice. J Am Soc Nephrol 16: 3188–3195, 200510.1681/ASN.2005060632PubMed)| false
BaronR, KneisselM: WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat Med19: 179–192, 201310.1038/nm.3074PubMed
BaronR, KneisselM: WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat Med 19: 179–192, 201310.1038/nm.3074PubMed)| false
RyanZC, KethaH, McNultyMS, McGee-LawrenceM, CraigTA, GrandeJP, et al.: Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proc Natl Acad Sci USA110: 6199–6204, 201310.1073/pnas.1221255110PubMed
RyanZC, KethaH, McNultyMS, McGee-LawrenceM, CraigTA, GrandeJP, et al.: Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proc Natl Acad Sci USA 110: 6199–6204, 201310.1073/pnas.1221255110PubMed)| false
van der WijstJ, TutakhelOAZ, BosC, DanserAHJ, HoornEJ, HoenderopJGJ, et al.: Effects of a high-sodium/low-potassium diet on renal calcium, magnesium, and phosphate handling. Am J Physiol Renal Physiol315: F110–F122, 201810.1152/ajprenal.00379.2017PubMed
van der WijstJ, TutakhelOAZ, BosC, DanserAHJ, HoornEJ, HoenderopJGJ, et al.: Effects of a high-sodium/low-potassium diet on renal calcium, magnesium, and phosphate handling. Am J Physiol Renal Physiol 315: F110–F122, 201810.1152/ajprenal.00379.2017PubMed)| false
Imenez SilvaPH, Katamesh-BenabbasC, ChanK, Pastor ArroyoEM, KnöpfelT, BettoniC, et al.: The proton-activated ovarian cancer G protein-coupled receptor 1 (OGR1) is responsible for renal calcium loss during acidosis. Kidney Int97: 920–933, 202010.1016/j.kint.2019.12.006PubMed
Imenez SilvaPH, Katamesh-BenabbasC, ChanK, Pastor ArroyoEM, KnöpfelT, BettoniC, et al.: The proton-activated ovarian cancer G protein-coupled receptor 1 (OGR1) is responsible for renal calcium loss during acidosis. Kidney Int 97: 920–933, 202010.1016/j.kint.2019.12.006PubMed)| false
KhalilR, KimNR, JardiF, VanderschuerenD, ClaessensF, DecallonneB: Sex steroids and the kidney: Role in renal calcium and phosphate handling. Mol Cell Endocrinol465: 61–72, 201810.1016/j.mce.2017.11.011PubMed
KhalilR, KimNR, JardiF, VanderschuerenD, ClaessensF, DecallonneB: Sex steroids and the kidney: Role in renal calcium and phosphate handling. Mol Cell Endocrinol 465: 61–72, 201810.1016/j.mce.2017.11.011PubMed)| false
LinPH, JianCY, ChouJC, ChenCW, ChenCC, SoongC, et al.: Induction of renal senescence marker protein-30 (SMP30) expression by testosterone and its contribution to urinary calcium absorption in male rats. Sci Rep6: 32085, 201610.1038/srep32085PubMed
LinPH, JianCY, ChouJC, ChenCW, ChenCC, SoongC, et al.: Induction of renal senescence marker protein-30 (SMP30) expression by testosterone and its contribution to urinary calcium absorption in male rats. Sci Rep 6: 32085, 201610.1038/srep32085PubMed)| false
BeggsMR, AppelI, SvenningsenP, SkjødtK, AlexanderRT, DimkeH: Expression of transcellular and paracellular calcium and magnesium transport proteins in renal and intestinal epithelia during lactation. Am J Physiol Renal Physiol313: F629–F640, 201710.1152/ajprenal.00680.2016PubMed
BeggsMR, AppelI, SvenningsenP, SkjødtK, AlexanderRT, DimkeH: Expression of transcellular and paracellular calcium and magnesium transport proteins in renal and intestinal epithelia during lactation. Am J Physiol Renal Physiol 313: F629–F640, 201710.1152/ajprenal.00680.2016PubMed)| false
Vall-PalomarM, BurballaC, Claverie-MartínF, MeseguerA, AricetaG: Heterogeneity is a common ground in familial hypomagnesemia with hypercalciuria and nephrocalcinosis caused by CLDN19 gene mutations. J Nephrol34: 2053–2062, 202110.1007/s40620-021-01054-6PubMed
Vall-PalomarM, BurballaC, Claverie-MartínF, MeseguerA, AricetaG: Heterogeneity is a common ground in familial hypomagnesemia with hypercalciuria and nephrocalcinosis caused by CLDN19 gene mutations. J Nephrol 34: 2053–2062, 202110.1007/s40620-021-01054-6PubMed)| false
HouJ, ReniguntaV, NieM, SunqA, HimmerkusN, QuintanovaC, et al.: Phosphorylated claudin-16 interacts with Trpv5 and regulates transcellular calcium transport in the kidney. Proc Natl Acad Sci USA116: 19176–19186, 201910.1073/pnas.1902042116PubMed
HouJ, ReniguntaV, NieM, SunqA, HimmerkusN, QuintanovaC, et al.: Phosphorylated claudin-16 interacts with Trpv5 and regulates transcellular calcium transport in the kidney. Proc Natl Acad Sci USA 116: 19176–19186, 201910.1073/pnas.1902042116PubMed)| false
KompatscherA, de BaaijJHF, AboudehenK, FarahaniS, van SonLHJ, MilatzS, et al.: Transcription factor HNF1β regulates expression of the calcium-sensing receptor in the thick ascending limb of the kidney. Am J Physiol Renal Physiol315: F27–F35, 201810.1152/ajprenal.00601.2017PubMed
KompatscherA, de BaaijJHF, AboudehenK, FarahaniS, van SonLHJ, MilatzS, et al.: Transcription factor HNF1β regulates expression of the calcium-sensing receptor in the thick ascending limb of the kidney. Am J Physiol Renal Physiol 315: F27–F35, 201810.1152/ajprenal.00601.2017PubMed)| false
SickingM, ŽivnáM, BhadraP, BarešováV, TirincsiA, HadzibeganovicD, et al.: Phenylbutyrate rescues the transport defect of the Sec61α mutations V67G and T185A for renin. Life Sci Alliance5: e202101150, 202210.26508/lsa.202101150PubMed
SickingM, ŽivnáM, BhadraP, BarešováV, TirincsiA, HadzibeganovicD, et al.: Phenylbutyrate rescues the transport defect of the Sec61α mutations V67G and T185A for renin. Life Sci Alliance 5: e202101150, 202210.26508/lsa.202101150PubMed)| false
MishimaK, NakasatomiM, TakahashiS, IkeuchiH, SakairiT, KanekoY, et al.: Attenuation of renal fibrosis after unilateral ureteral obstruction in mice lacking the N-type calcium channel. PLoS One14: e0223496, 201910.1371/journal.pone.0223496PubMed
MishimaK, NakasatomiM, TakahashiS, IkeuchiH, SakairiT, KanekoY, et al.: Attenuation of renal fibrosis after unilateral ureteral obstruction in mice lacking the N-type calcium channel. PLoS One 14: e0223496, 201910.1371/journal.pone.0223496PubMed)| false
LiuX, TangJ, ChenXZ: Role of PKD2 in the endoplasmic reticulum calcium homeostasis. Front Physiol13: 962571, 202210.3389/fphys.2022.962571PubMed
LiuX, TangJ, ChenXZ: Role of PKD2 in the endoplasmic reticulum calcium homeostasis. Front Physiol 13: 962571, 202210.3389/fphys.2022.962571PubMed)| false
Di MiseA, TammaG, RanieriM, CentroneM, van den HeuvelL, MekahliD, et al.: Activation of calcium-sensing receptor increases intracellular calcium and decreases cAMP and mTOR in PKD1 deficient cells. Sci Rep8: 5704, 201810.1038/s41598-018-23732-5PubMed
Di MiseA, TammaG, RanieriM, CentroneM, van den HeuvelL, MekahliD, et al.: Activation of calcium-sensing receptor increases intracellular calcium and decreases cAMP and mTOR in PKD1 deficient cells. Sci Rep 8: 5704, 201810.1038/s41598-018-23732-5PubMed)| false
Di MiseA, RanieriM, CentroneM, VenneriM, TammaG, ValentiD, et al.: Activation of the calcium-sensing receptor corrects the impaired mitochondrial energy status observed in renal polycystin-1 knockdown cells modeling autosomal dominant polycystic kidney disease. Front Mol Biosci5: 77, 201810.3389/fmolb.2018.00077PubMed
Di MiseA, RanieriM, CentroneM, VenneriM, TammaG, ValentiD, et al.: Activation of the calcium-sensing receptor corrects the impaired mitochondrial energy status observed in renal polycystin-1 knockdown cells modeling autosomal dominant polycystic kidney disease. Front Mol Biosci 5: 77, 201810.3389/fmolb.2018.00077PubMed)| false
Di MiseA, WangX, YeH, PellegriniL, TorresVE, ValentiG: Pre-clinical evaluation of dual targeting of the GPCRs CaSR and V2R as therapeutic strategy for autosomal dominant polycystic kidney disease. FASEB J35: e21874, 202110.1096/fj.202100774RPubMed
Di MiseA, WangX, YeH, PellegriniL, TorresVE, ValentiG: Pre-clinical evaluation of dual targeting of the GPCRs CaSR and V2R as therapeutic strategy for autosomal dominant polycystic kidney disease. FASEB J 35: e21874, 202110.1096/fj.202100774RPubMed)| false
NingB, GuoC, KongA, LiK, XieY, ShiH, et al.: Calcium signaling mediates cell death and crosstalk with autophagy in kidney disease. Cells10: 3204, 202110.3390/cells10113204PubMed
NingB, GuoC, KongA, LiK, XieY, ShiH, et al.: Calcium signaling mediates cell death and crosstalk with autophagy in kidney disease. Cells 10: 3204, 202110.3390/cells10113204PubMed)| false
IlatovskayaDV, BlassG, PalyginO, LevchenkoV, PavlovTS, GrzybowskiMN, et al.: A NOX4/TRPC6 pathway in podocyte calcium regulation and renal damage in diabetic kidney disease. J Am Soc Nephrol29: 1917–1927, 201810.1681/ASN.2018030280PubMed
IlatovskayaDV, BlassG, PalyginO, LevchenkoV, PavlovTS, GrzybowskiMN, et al.: A NOX4/TRPC6 pathway in podocyte calcium regulation and renal damage in diabetic kidney disease. J Am Soc Nephrol 29: 1917–1927, 201810.1681/ASN.2018030280PubMed)| false
VascoRFV, TakayamaL, PereiraRMR, MoysesRMA, EliasRM: Effects of diuretics furosemide and hydrochlorothiazide on CKD-MBD: A prospective randomized study. Bone Rep14: 100746, 202110.1016/j.bonr.2021.100746PubMed
VascoRFV, TakayamaL, PereiraRMR, MoysesRMA, EliasRM: Effects of diuretics furosemide and hydrochlorothiazide on CKD-MBD: A prospective randomized study. Bone Rep 14: 100746, 202110.1016/j.bonr.2021.100746PubMed)| false
ShroffR, LalayiannisAD, FewtrellM, SchmittCP, BayazitA, AskitiV, et al.: Naturally occurring stable calcium isotope ratios are a novel biomarker of bone calcium balance in chronic kidney disease. Kidney Int102: 613–623, 202210.1016/j.kint.2022.04.024PubMed
ShroffR, LalayiannisAD, FewtrellM, SchmittCP, BayazitA, AskitiV, et al.: Naturally occurring stable calcium isotope ratios are a novel biomarker of bone calcium balance in chronic kidney disease. Kidney Int 102: 613–623, 202210.1016/j.kint.2022.04.024PubMed)| false
DasS, ClézardinP, KamelS, BrazierM, MentaverriR: The CaSR in pathogenesis of breast cancer: A new target for early stage bone metastases. Front Oncol10: 69, 202010.3389/fonc.2020.00069PubMed
DasS, ClézardinP, KamelS, BrazierM, MentaverriR: The CaSR in pathogenesis of breast cancer: A new target for early stage bone metastases. Front Oncol 10: 69, 202010.3389/fonc.2020.00069PubMed)| false
JeongS, KimJH, KimMG, HanN, KimIW, KimT, et al.: Genetic polymorphisms of CASR and cancer risk: Evidence from meta-analysis and HuGE review. OncoTargets Ther9: 655–669, 201610.2147/ott.S97602PubMed
JeongS, KimJH, KimMG, HanN, KimIW, KimT, et al.: Genetic polymorphisms of CASR and cancer risk: Evidence from meta-analysis and HuGE review. OncoTargets Ther 9: 655–669, 201610.2147/ott.S97602PubMed)| false
Orduña-CastilloLB, Del-Río-RoblesJE, García-JiménezI, Zavala-BarreraC, Beltrán-NavarroYM, Hidalgo-MoyleJJ, et al.: Calcium sensing receptor stimulates breast cancer cell migration via the Gβγ-AKT-mTORC2 signaling pathway. J Cell Commun Signal16: 239–252, 202210.1007/s12079-021-00662-yPubMed
Orduña-CastilloLB, Del-Río-RoblesJE, García-JiménezI, Zavala-BarreraC, Beltrán-NavarroYM, Hidalgo-MoyleJJ, et al.: Calcium sensing receptor stimulates breast cancer cell migration via the Gβγ-AKT-mTORC2 signaling pathway. J Cell Commun Signal 16: 239–252, 202210.1007/s12079-021-00662-yPubMed)| false
FreesS, BreukschI, HaberT, BauerHK, Chavez-MunozC, RavenP, et al.: Calcium-sensing receptor (CaSR) promotes development of bone metastasis in renal cell carcinoma. Oncotarget9: 15766–15779, 201810.18632/oncotarget.24607PubMed
FreesS, BreukschI, HaberT, BauerHK, Chavez-MunozC, RavenP, et al.: Calcium-sensing receptor (CaSR) promotes development of bone metastasis in renal cell carcinoma. Oncotarget 9: 15766–15779, 201810.18632/oncotarget.24607PubMed)| false
MiyaokaD, ImanishiY, OharaM, HayashiN, NagataY, YamadaS, et al.: Impaired residual renal function predicts denosumab-induced serum calcium decrement as well as increment of bone mineral density in non-severe renal insufficiency. Osteoporos Int30: 241–249, 201910.1007/s00198-018-4688-1PubMed
MiyaokaD, ImanishiY, OharaM, HayashiN, NagataY, YamadaS, et al.: Impaired residual renal function predicts denosumab-induced serum calcium decrement as well as increment of bone mineral density in non-severe renal insufficiency. Osteoporos Int 30: 241–249, 201910.1007/s00198-018-4688-1PubMed)| false
BroadwellA, ChinesA, EbelingPR, FranekE, HuangS, SmithS, et al.: Denosumab safety and efficacy among participants in the FREEDOM extension study with mild to moderate chronic kidney disease. J Clin Endocrinol Metab106: 397–409, 202110.1210/clinem/dgaa851PubMed
BroadwellA, ChinesA, EbelingPR, FranekE, HuangS, SmithS, et al.: Denosumab safety and efficacy among participants in the FREEDOM extension study with mild to moderate chronic kidney disease. J Clin Endocrinol Metab 106: 397–409, 202110.1210/clinem/dgaa851PubMed)| false
HiramatsuR, UbaraY, SawaN, SakaiA: Hypocalcemia and bone mineral changes in hemodialysis patients with low bone mass treated with denosumab: A 2-year observational study. Nephrol Dial Transplant36: 1900–1907, 202110.1093/ndt/gfaa359PubMed
HiramatsuR, UbaraY, SawaN, SakaiA: Hypocalcemia and bone mineral changes in hemodialysis patients with low bone mass treated with denosumab: A 2-year observational study. Nephrol Dial Transplant 36: 1900–1907, 202110.1093/ndt/gfaa359PubMed)| false
ThongprayoonC, AcharyaP, AcharyaC, ChenbhanichJ, BathiniT, BoonphengB, et al.: Hypocalcemia and bone mineral density changes following denosumab treatment in end-stage renal disease patients: A meta-analysis of observational studies. Osteoporos Int29: 1737–1745, 201810.1007/s00198-018-4533-6PubMed
ThongprayoonC, AcharyaP, AcharyaC, ChenbhanichJ, BathiniT, BoonphengB, et al.: Hypocalcemia and bone mineral density changes following denosumab treatment in end-stage renal disease patients: A meta-analysis of observational studies. Osteoporos Int 29: 1737–1745, 201810.1007/s00198-018-4533-6PubMed)| false
ThongprayoonC, AcharyaP, AeddulaNR, Torres-OrtizA, BathiniT, SharmaK, et al.: Effects of denosumab on bone metabolism and bone mineral density in kidney transplant patients: A systematic review and meta-analysis. Arch Osteoporos14: 35, 201910.1007/s11657-019-0587-0PubMed
ThongprayoonC, AcharyaP, AeddulaNR, Torres-OrtizA, BathiniT, SharmaK, et al.: Effects of denosumab on bone metabolism and bone mineral density in kidney transplant patients: A systematic review and meta-analysis. Arch Osteoporos 14: 35, 201910.1007/s11657-019-0587-0PubMed)| false
NanmokuK, ShinzatoT, KuboT, ShimizuT, YagisawaT: Effects of denosumab on hypercalcemia and bone mineral density loss in kidney transplant recipients. Clin Nephrol92: 1–8, 201910.5414/CN109723PubMed
NanmokuK, ShinzatoT, KuboT, ShimizuT, YagisawaT: Effects of denosumab on hypercalcemia and bone mineral density loss in kidney transplant recipients. Clin Nephrol 92: 1–8, 201910.5414/CN109723PubMed)| false
KanbayashiY, SakaguchiK, HongoF, IshikawaT, TabuchiY, UkimuraO, et al.: Predictors for development of denosumab-induced hypocalcaemia in cancer patients with bone metastases determined by ordered logistic regression analysis. Sci Rep11: 978, 202110.1038/s41598-020-80243-yPubMed
KanbayashiY, SakaguchiK, HongoF, IshikawaT, TabuchiY, UkimuraO, et al.: Predictors for development of denosumab-induced hypocalcaemia in cancer patients with bone metastases determined by ordered logistic regression analysis. Sci Rep 11: 978, 202110.1038/s41598-020-80243-yPubMed)| false
UppalNN, WorkenehBT, Rondon-BerriosH, JhaveriKD: Electrolyte and acid-base disorders associated with cancer immunotherapy. Clin J Am Soc Nephrol17: 922–933, 202210.2215/cjn.14671121PubMed
UppalNN, WorkenehBT, Rondon-BerriosH, JhaveriKD: Electrolyte and acid-base disorders associated with cancer immunotherapy. Clin J Am Soc Nephrol 17: 922–933, 202210.2215/cjn.14671121PubMed)| false
NalluruSS, PiranavanP, NingY, AckulaH, SiddiquiAD, TrivediN: Hypocalcemia with immune checkpoint inhibitors: The disparity among various reports. Int J Endocrinol2020: 7459268, 202010.1155/2020/7459268PubMed
NalluruSS, PiranavanP, NingY, AckulaH, SiddiquiAD, TrivediN: Hypocalcemia with immune checkpoint inhibitors: The disparity among various reports. Int J Endocrinol 2020: 7459268, 202010.1155/2020/7459268PubMed)| false
YuST, GeJN, LuoJY, WeiZG, SunBH, LeiST: Treatment-related adverse effects with TKIs in patients with advanced or radioiodine refractory differentiated thyroid carcinoma: A systematic review and meta-analysis. Cancer Manag Res11: 1525–1532, 201910.2147/cmar.S191499PubMed
YuST, GeJN, LuoJY, WeiZG, SunBH, LeiST: Treatment-related adverse effects with TKIs in patients with advanced or radioiodine refractory differentiated thyroid carcinoma: A systematic review and meta-analysis. Cancer Manag Res 11: 1525–1532, 201910.2147/cmar.S191499PubMed)| false
BerendsAMA, van der Horst-SchriversANA, OostingSF, KapiteijnEW, de GrootJWB, LinksTP: Hypocalcemia induced by tyrosine kinase inhibitors: Targeted treatment with ‘untargeted’ side effects. Acta Oncol59: 726–729, 202010.1080/0284186x.2020.1726455PubMed
BerendsAMA, van der Horst-SchriversANA, OostingSF, KapiteijnEW, de GrootJWB, LinksTP: Hypocalcemia induced by tyrosine kinase inhibitors: Targeted treatment with ‘untargeted’ side effects. Acta Oncol 59: 726–729, 202010.1080/0284186x.2020.1726455PubMed)| false
HoLY, WongPN, SinHK, WongYY, LoKC, ChanSF, et al.: Risk factors and clinical course of hungry bone syndrome after total parathyroidectomy in dialysis patients with secondary hyperparathyroidism. BMC Nephrol18: 12, 201710.1186/s12882-016-0421-5PubMed
HoLY, WongPN, SinHK, WongYY, LoKC, ChanSF, et al.: Risk factors and clinical course of hungry bone syndrome after total parathyroidectomy in dialysis patients with secondary hyperparathyroidism. BMC Nephrol 18: 12, 201710.1186/s12882-016-0421-5PubMed)| false
GeY, YangG, WangN, ZhaX, YuX, MaoH, et al.: Bone metabolism markers and hungry bone syndrome after parathyroidectomy in dialysis patients with secondary hyperparathyroidism. Int Urol Nephrol51: 1443–1449, 201910.1007/s11255-019-02217-yPubMed
GeY, YangG, WangN, ZhaX, YuX, MaoH, et al.: Bone metabolism markers and hungry bone syndrome after parathyroidectomy in dialysis patients with secondary hyperparathyroidism. Int Urol Nephrol 51: 1443–1449, 201910.1007/s11255-019-02217-yPubMed)| false
GaoD, LouY, CuiY, LiuS, CuiW, SunG: Risk factors for hypocalcemia in dialysis patients with refractory secondary hyperparathyroidism after parathyroidectomy: A meta-analysis. Ren Fail44: 503–512, 202210.1080/0886022x.2022.2048856PubMed
GaoD, LouY, CuiY, LiuS, CuiW, SunG: Risk factors for hypocalcemia in dialysis patients with refractory secondary hyperparathyroidism after parathyroidectomy: A meta-analysis. Ren Fail 44: 503–512, 202210.1080/0886022x.2022.2048856PubMed)| false
ZhaoS, GanW, XieW, CaoJ, ZhangL, WenP, et al.: A single-center experience of parathyroidectomy in 1500 cases for secondary hyperparathyroidism: A retrospective study. Ren Fail44: 23–29, 202210.1080/0886022x.2021.2016445PubMed
ZhaoS, GanW, XieW, CaoJ, ZhangL, WenP, et al.: A single-center experience of parathyroidectomy in 1500 cases for secondary hyperparathyroidism: A retrospective study. Ren Fail 44: 23–29, 202210.1080/0886022x.2021.2016445PubMed)| false
SunY, TianB, ShengZ, WanP, XuT, YaoL: Efficacy and safety of cinacalcet compared with other treatments for secondary hyperparathyroidism in patients with chronic kidney disease or end-stage renal disease: A meta-analysis. BMC Nephrol21: 316, 202010.1186/s12882-019-1639-9PubMed
SunY, TianB, ShengZ, WanP, XuT, YaoL: Efficacy and safety of cinacalcet compared with other treatments for secondary hyperparathyroidism in patients with chronic kidney disease or end-stage renal disease: A meta-analysis. BMC Nephrol 21: 316, 202010.1186/s12882-019-1639-9PubMed)| false
BernardorJ, FlammierS, SallesJP, AmourouxC, CastanetM, LienhardtA, et al.: Off-label use of cinacalcet in pediatric primary hyperparathyroidism: A French multicenter experience. Front Pediatr10: 926986, 202210.3389/fped.2022.926986PubMed
BernardorJ, FlammierS, SallesJP, AmourouxC, CastanetM, LienhardtA, et al.: Off-label use of cinacalcet in pediatric primary hyperparathyroidism: A French multicenter experience. Front Pediatr 10: 926986, 202210.3389/fped.2022.926986PubMed)| false
SheerahAA, Al-AhmedRA, El-DesokySM, AlhasanKA, AlbannaAS, ShalabyMA, et al.: Cinacalcet for severe secondary hyperparathyroidism in children with end-stage kidney disease. Saudi J Kidney Dis Transpl32: 1628–1636, 202110.4103/1319-2442.352423PubMed
SheerahAA, Al-AhmedRA, El-DesokySM, AlhasanKA, AlbannaAS, ShalabyMA, et al.: Cinacalcet for severe secondary hyperparathyroidism in children with end-stage kidney disease. Saudi J Kidney Dis Transpl 32: 1628–1636, 202110.4103/1319-2442.352423PubMed)| false
WangAX, LiuS, Montez-RathME, ChertowGM, LenihanCR: Parathyroidectomy and cinacalcet use in medicare-insured kidney transplant recipients. Am J Kidney Dis81: 270–280.e1, 202310.1053/j.ajkd.2022.07.015PubMed
WangAX, LiuS, Montez-RathME, ChertowGM, LenihanCR: Parathyroidectomy and cinacalcet use in medicare-insured kidney transplant recipients. Am J Kidney Dis 81: 270–280.e1, 202310.1053/j.ajkd.2022.07.015PubMed)| false
FloegeJ, TsirtsonisK, IlesJ, DruekeTB, ChertowGM, ParfreyP: Incidence, predictors and therapeutic consequences of hypocalcemia in patients treated with cinacalcet in the EVOLVE trial. Kidney Int93: 1475–1482, 201810.1016/j.kint.2017.12.014PubMed
FloegeJ, TsirtsonisK, IlesJ, DruekeTB, ChertowGM, ParfreyP: Incidence, predictors and therapeutic consequences of hypocalcemia in patients treated with cinacalcet in the EVOLVE trial. Kidney Int 93: 1475–1482, 201810.1016/j.kint.2017.12.014PubMed)| false
PalmerSC, MavridisD, JohnsonDW, TonelliM, RuospoM, StrippoliGFM: Comparative effectiveness of calcimimetic agents for secondary hyperparathyroidism in adults: A systematic review and network meta-analysis. Am J Kidney Dis76: 321–330, 202010.1053/j.ajkd.2020.02.439PubMed
PalmerSC, MavridisD, JohnsonDW, TonelliM, RuospoM, StrippoliGFM: Comparative effectiveness of calcimimetic agents for secondary hyperparathyroidism in adults: A systematic review and network meta-analysis. Am J Kidney Dis 76: 321–330, 202010.1053/j.ajkd.2020.02.439PubMed)| false
LouieKS, ErhardC, WheelerDC, StenvinkelP, FouquerayB, FloegeJ: Cinacalcet-induced hypocalcemia in a cohort of European haemodialysis patients: Predictors, therapeutic approaches and outcomes. J Nephrol33: 803–816, 202010.1007/s40620-019-00686-zPubMed
LouieKS, ErhardC, WheelerDC, StenvinkelP, FouquerayB, FloegeJ: Cinacalcet-induced hypocalcemia in a cohort of European haemodialysis patients: Predictors, therapeutic approaches and outcomes. J Nephrol 33: 803–816, 202010.1007/s40620-019-00686-zPubMed)| false
OkE, AsciG, BayraktarogluS, TozH, OzkahyaM, YilmazM, et al.: Reduction of dialysate calcium level reduces progression of coronary artery calcification and improves low bone turnover in patients on hemodialysis. J Am Soc Nephrol27: 2475–2486, 201610.1681/ASN.2015030268PubMed
OkE, AsciG, BayraktarogluS, TozH, OzkahyaM, YilmazM, et al.: Reduction of dialysate calcium level reduces progression of coronary artery calcification and improves low bone turnover in patients on hemodialysis. J Am Soc Nephrol 27: 2475–2486, 201610.1681/ASN.2015030268PubMed)| false
YoshikawaM, TakaseO, TsujimuraT, SanoE, HayashiM, TakatoT, et al.: Long-term effects of low calcium dialysates on the serum calcium levels during maintenance hemodialysis treatments: A systematic review and meta-analysis. Sci Rep8: 5310, 201810.1038/s41598-018-23658-yPubMed
YoshikawaM, TakaseO, TsujimuraT, SanoE, HayashiM, TakatoT, et al.: Long-term effects of low calcium dialysates on the serum calcium levels during maintenance hemodialysis treatments: A systematic review and meta-analysis. Sci Rep 8: 5310, 201810.1038/s41598-018-23658-yPubMed)| false
KellyYP, SharmaS, MothiSS, McCauslandFR, MenduML, McMahonGM, et al.: Hypocalcemia is associated with hypotension during CRRT: A secondary analysis of the Acute Renal Failure Trial Network Study. J Crit Care65: 261–267, 202110.1016/j.jcrc.2021.07.008PubMed
KellyYP, SharmaS, MothiSS, McCauslandFR, MenduML, McMahonGM, et al.: Hypocalcemia is associated with hypotension during CRRT: A secondary analysis of the Acute Renal Failure Trial Network Study. J Crit Care 65: 261–267, 202110.1016/j.jcrc.2021.07.008PubMed)| false
OgawaM, MorikawaM, KobatakeM, MurakamiT, YamamotoY, WatanabeR, et al.: Hypercalcemia associated with the ectopic expression of 25-hydroxyvitamin D3-1α-hydroxylase in diffuse large B-cell lymphoma. Intern Med61: 2489–2495, 202210.2169/internalmedicine.8933-21PubMed
OgawaM, MorikawaM, KobatakeM, MurakamiT, YamamotoY, WatanabeR, et al.: Hypercalcemia associated with the ectopic expression of 25-hydroxyvitamin D3-1α-hydroxylase in diffuse large B-cell lymphoma. Intern Med 61: 2489–2495, 202210.2169/internalmedicine.8933-21PubMed)| false
QuinnCD, ChaudharyF, Gould-SimonA, ChenB, BhandalHS, ChaudharyU: A case of a rare parathyroid hormone (PTH)-producing neuroendocrine tumor. Am J Case Rep23: e935783, 202210.12659/ajcr.935783PubMed
QuinnCD, ChaudharyF, Gould-SimonA, ChenB, BhandalHS, ChaudharyU: A case of a rare parathyroid hormone (PTH)-producing neuroendocrine tumor. Am J Case Rep 23: e935783, 202210.12659/ajcr.935783PubMed)| false
VallonF, MeierC, GautierE, WahlP: The incidence of severe hypercalcaemia-induced mental status changes in patients treated with antibiotic-loaded calcium sulphate depot for orthopaedic infections. J Clin Med11: 4900, 202210.3390/jcm11164900PubMed
VallonF, MeierC, GautierE, WahlP: The incidence of severe hypercalcaemia-induced mental status changes in patients treated with antibiotic-loaded calcium sulphate depot for orthopaedic infections. J Clin Med 11: 4900, 202210.3390/jcm11164900PubMed)| false
ManfroAG, LutzkyM, DoraJM, KalilMAS, ManfroRC: Case reports of hypercalcemia and chronic renal disease due to cosmetic injections of polymethylmethacrylate (PMMA). J Bras Nefrol. Aug 10 2020;doi:10.1590/2175-8239-JBN-2020-0044
ManfroAG, LutzkyM, DoraJM, KalilMAS, ManfroRC: Case reports of hypercalcemia and chronic renal disease due to cosmetic injections of polymethylmethacrylate (PMMA). J Bras Nefrol. Aug 10 2020;doi:10.1590/2175-8239-JBN-2020-0044)| false
ManfroAG, LutzkyM, DoraJM, KalilMAS, ManfroRC: Case reports of hypercalcemia and chronic renal disease due to cosmetic injections of polymethylmethacrylate (PMMA). J Bras Nefrol43: 288–292, 202110.1590/2175-8239-jbn-2020-0044PubMed
ManfroAG, LutzkyM, DoraJM, KalilMAS, ManfroRC: Case reports of hypercalcemia and chronic renal disease due to cosmetic injections of polymethylmethacrylate (PMMA). J Bras Nefrol 43: 288–292, 202110.1590/2175-8239-jbn-2020-0044PubMed)| false
StewartAF, AdlerM, ByersCM, SegreGV, BroadusAE: Calcium homeostasis in immobilization: An example of resorptive hypercalciuria. N Engl J Med306: 1136–1140, 198210.1056/NEJM198205133061903PubMed
StewartAF, AdlerM, ByersCM, SegreGV, BroadusAE: Calcium homeostasis in immobilization: An example of resorptive hypercalciuria. N Engl J Med 306: 1136–1140, 198210.1056/NEJM198205133061903PubMed)| false
SpatzJM, FieldsEE, YuEW, Divieti PajevicP, BouxseinML, SibongaJD, et al.: Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab97: E1736–E1740, 201210.1210/jc.2012-1579PubMed
SpatzJM, FieldsEE, YuEW, Divieti PajevicP, BouxseinML, SibongaJD, et al.: Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab 97: E1736–E1740, 201210.1210/jc.2012-1579PubMed)| false
OsipovB, EmamiAJ, ChristiansenBA: Systemic bone loss after fracture. Clin Rev Bone Miner Metab16: 116–130, 201810.1007/s12018-018-9253-0PubMed
OsipovB, EmamiAJ, ChristiansenBA: Systemic bone loss after fracture. Clin Rev Bone Miner Metab 16: 116–130, 201810.1007/s12018-018-9253-0PubMed)| false
WangPL, MeyerMM, OrloffSL, AndersonS: Bone resorption and “relative” immobilization hypercalcemia with prolonged continuous renal replacement therapy and citrate anticoagulation. Am J Kidney Dis44: 1110–1114, 200410.1053/j.ajkd.2004.09.001PubMed
WangPL, MeyerMM, OrloffSL, AndersonS: Bone resorption and “relative” immobilization hypercalcemia with prolonged continuous renal replacement therapy and citrate anticoagulation. Am J Kidney Dis 44: 1110–1114, 200410.1053/j.ajkd.2004.09.001PubMed)| false
BerktaşBM, GökçekA, HocaNT, KoyuncuA: COVID-19 illness and treatment decrease bone mineral density of surviving hospitalized patients. Eur Rev Med Pharmacol Sci26: 3046–3056, 202210.26355/eurrev_202204_28636PubMed
BerktaşBM, GökçekA, HocaNT, KoyuncuA: COVID-19 illness and treatment decrease bone mineral density of surviving hospitalized patients. Eur Rev Med Pharmacol Sci 26: 3046–3056, 202210.26355/eurrev_202204_28636PubMed)| false
MeslandJB, CollienneC, LaterrePF, HantsonP: Immobilization-related hypercalcemia in a COVID-19 patient with prolonged intensive care unit stay. Am J Phys Med Rehabil101: 61–63, 202210.1097/phm.0000000000001907PubMed
MeslandJB, CollienneC, LaterrePF, HantsonP: Immobilization-related hypercalcemia in a COVID-19 patient with prolonged intensive care unit stay. Am J Phys Med Rehabil 101: 61–63, 202210.1097/phm.0000000000001907PubMed)| false