Chronic Kidney Disease-Mineral and Bone Disorder Is Entangled with the Gut
By:
Grahame J. Elder Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
Skeletal Biology Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
University of Notre Dame, Darlinghurst, New South Wales, Australia

Search for other papers by Grahame J. Elder in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1.

    Narisawa S, Huang L, Iwasaki A, Hasegawa H, Alpers DH, Millán JL: Accelerated fat absorption in intestinal alkaline phosphatase knockout mice. Mol Cell Biol 23: 75257530, 2003 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Haarhaus M, Brandenburg V, Kalantar-Zadeh K, Stenvinkel P, Magnusson P: Alkaline phosphatase: A novel treatment target for cardiovascular disease in CKD. Nat Rev Nephrol 13: 429442, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Kidney Disease: Improving Global Outcomes CKD-MBD Update Work Group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl 7: 159 201 2017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al.: Diversity of the human intestinal microbial flora. Science 308: 16351638, 2005 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al.: What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7: 14, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Haenen D, Zhang J, Souza da Silva C, Bosch G, van der Meer IM, van Arkel J, et al.: A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J Nutr 143: 274283, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Peng L, He Z, Chen W, Holzman IR, Lin J: Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr Res 61: 3741, 2007 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bergman EN: Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70: 567590, 1990 PubMed

  • 9.

    Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al.: Gut microbiota functions: Metabolism of nutrients and other food components. Eur J Nutr 57: 124, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI: Human nutrition, the gut microbiome and the immune system. Nature 474: 327336, 2011 PubMed

  • 11.

    Meijers B, Evenepoel P, Anders HJ: Intestinal microbiome and fitness in kidney disease. Nat Rev Nephrol 15: 531545, 2019 PubMed

  • 12.

    Kieffer DA, Piccolo BD, Vaziri ND, Liu S, Lau WL, Khazaeli M, et al.: Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am J Physiol Renal Physiol 310: F857F871, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kikuchi K, Saigusa D, Kanemitsu Y, Matsumoto Y, Thanai P, Suzuki N, et al.: Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat Commun 10: 1835, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Evenepoel P, Meijers BK, Bammens BR, Verbeke K: Uremic toxins originating from colonic microbial metabolism. Kidney Int Suppl (114): S12S19, 2009 PubMed

  • 15.

    Uzawa T, Hori M, Ejiri S, Ozawa H: Comparison of the effects of intermittent and continuous administration of human parathyroid hormone(1-34) on rat bone. Bone 16: 477484, 1995 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Saini V, Marengi DA, Barry KJ, Fulzele KS, Heiden E, Liu X, et al.: Parathyroid hormone (PTH)/PTH-related peptide type 1 receptor (PPR) signaling in osteocytes regulates anabolic and catabolic skeletal responses to PTH. J Biol Chem 288: 2012220134, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Yu M, D’Amelio P, Tyagi AM, Vaccaro C, Li JY, Hsu E, et al.: Regulatory T cells are expanded by Teriparatide treatment in humans and mediate intermittent PTH-induced bone anabolism in mice. EMBO Rep 19: 156171, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Terauchi M, Li JY, Bedi B, Baek KH, Tawfeek H, Galley S, et al.: T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab 10: 229240, 2009 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Li JY, Yu M, Pal S, Tyagi AM, Dar H, Adams J, et al.: Parathyroid hormone-dependent bone formation requires butyrate production by intestinal microbiota. J Clin Invest 130: 17671781, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al.: The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341: 569573, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Zeng H, Chi H: Metabolic control of regulatory T cell development and function. Trends Immunol 36: 312, 2015 PubMed

  • 22.

    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al.: Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504: 446450, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Massy ZA, Drueke TB: Gut microbiota orchestrates PTH action in bone: Role of butyrate and T cells. Kidney Int 98: 269272, 2020 PubMed

  • 24.

    Yu M, Malik Tyagi A, Li JY, Adams J, Denning TL, Weitzmann MN, et al.: PTH induces bone loss via microbial-dependent expansion of intestinal TNF+ T cells and Th17 cells. Nat Commun 11: 468, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Tawfeek H, Bedi B, Li JY, Adams J, Kobayashi T, Weitzmann MN, et al.: Disruption of PTH receptor 1 in T cells protects against PTH-induced bone loss. PLoS One 5: e12290, 2010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Miossec P, Korn T, Kuchroo VK: Interleukin-17 and type 17 helper T cells. N Engl J Med 361: 888898, 2009 PubMed

  • 27.

    Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al.: Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203: 26732682, 2006 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Uluçkan Ö, Jimenez M, Karbach S, Jeschke A, Graña O, Keller J, et al.: Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts. Sci Transl Med 8: 330ra37, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al.: Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139: 485498, 2009 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, et al.: Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167: 11251136.e8, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Yang Y, Torchinsky MB, Gobert M, Xiong H, Xu M, Linehan JL, et al.: Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510: 152156, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Lioufas NM, Pascoe EM, Hawley CM, Elder GJ, Badve SV, Block GA, et al.: Systematic review and meta-analyses of the effects of phosphate-lowering agents in nondialysis CKD. J Am Soc Nephrol 33: 5976, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Toussaint ND, Pedagogos E, Lioufas NM, Elder GJ, Pascoe EM, Badve SV, et al.; IMPROVE-CKD Trial Investigators: A randomized trial on the effect of phosphate reduction on vascular end points in CKD (IMPROVE-CKD). J Am Soc Nephrol 31: 26532666, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Block GA, Wheeler DC, Persky MS, Kestenbaum B, Ketteler M, Spiegel DM, et al.: Effects of phosphate binders in moderate CKD. J Am Soc Nephrol 23: 14071415, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y, et al.: Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol 287: F39F47, 2004 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Ketteler M, Wiecek A, Rosenkranz AR, Pasch A, Rekowski J, Hellmann B, et al.: Efficacy and safety of a novel nicotinamide modified-release formulation in the treatment of refractory hyperphosphatemia in patients receiving hemodialysis–A randomized clinical trial. Kidney Int Rep 6: 594604, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Ogawa T, Shimada M, Nagano N, Ito K, Ando T, Shimomura Y, et al.: Oral administration of Bifidobacterium longum in a gastro-resistant seamless capsule decreases serum phosphate levels in patients receiving haemodialysis. Clin Kidney J 5: 373374, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Fusaro M, Cozzolino M, Plebani M, Iervasi G, Ketteler M, Gallieni M, et al.: Sevelamer use, vitamin K levels, vascular calcifications, and vertebral fractures in hemodialysis patients: Results from the VIKI Study. J Bone Miner Res 36: 500509, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Wu PH, Liu PY, Chiu YW, Hung WC, Lin YT, Lin TY, et al.: Comparative gut microbiome differences between ferric citrate and calcium carbonate phosphate binders in patients with end-stage kidney disease. Microorganisms 8: 2040, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Miao YY, Xu CM, Xia M, Zhu HQ, Chen YQ: Relationship between gut microbiota and phosphorus metabolism in hemodialysis patients: A preliminary exploration. Chin Med J (Engl) 131: 27922799, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Bennis Y, Cluet Y, Titeca-Beauport D, El Esper N, Ureña P, Bodeau S, et al.: The effect of sevelamer on serum levels of gut-derived uremic toxins: Results from in vitro experiments and a multicenter, double-blind, placebo-controlled, randomized clinical trial. Toxins (Basel) 11: 279, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I: Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet 6: 148, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Bellone F, Cinquegrani M, Nicotera R, Carullo N, Casarella A, Presta P, et al.: Role of vitamin K in chronic kidney disease: A focus on bone and cardiovascular health. Int J Mol Sci 23: 5282, 2022 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Frick PG, Riedler G, Brögli H: Dose response and minimal daily requirement for vitamin K in man. J Appl Physiol 23: 387389, 1967 PubMed

  • 45.

    Fusaro M, Noale M, Viola V, Galli F, Tripepi G, Vajente N, et al.; VItamin K Italian (VIKI) Dialysis Study Investigators: Vitamin K, vertebral fractures, vascular calcifications, and mortality: VItamin K Italian (VIKI) dialysis study. J Bone Miner Res 27: 22712278, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Saritas T, Reinartz S, Krüger T, Ketteler M, Liangos O, Labriola L, et al.; Vitamin K1 and progression of cardiovascular calcifications in hemodialysis patients: The VitaVasK randomized controlled trial. Clin Kidney J 15: 23002311, 2022

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Holden RM, Booth SL, Zimmerman D, Moist L, Norman P, Day AG, et al.: Inhibit progression of coronary artery calcification with vitamin k in hemodialysis patients (the iPACK-HD study): A randomized, placebo-controlled multi-centre, pilot trial. Nephrol Dial Transplant 38: 746756, 2023 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 808 594 43
Full Text Views 523 357 24
PDF Downloads 686 458 38