Diabetic Kidney Disease
By:
Susanne B. NicholasDepartment of Medicine, Division of Nephrology, David Geffen School of Medicine at University of California, Los Angeles, California

Search for other papers by Susanne B. Nicholas in
Current site
Google Scholar
PubMed
Close
and
Amy K. MottlDepartment of Medicine, Division of Nephrology, University of North Carolina, Chapel Hill, North Carolina

Search for other papers by Amy K. Mottl in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1

    Kimmelstiel P, Wilson C: Intercapillary lesions in the glomeruli of the kidney. Am J Pathol 12: 8398, 1936

  • 2

    Gauld WR, Sta Lker AL, Lyall A: Renal complications in diabetes mellitus with special reference to the Kimmelstiel-Wilson lesion. BMJ 2: 194200, 1948 10.1136/bmj.2.4568.194 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3

    Gellman DD, Pirani CL, Soothill JF, Muehrcke RC, Kark RM: Diabetic nephropathy: A clinical and pathologic study based on renal biopsies. Medicine (Baltimore) 38: 321367, 1959 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Mogensen CE, Christensen CK, Vittinghus E: The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 32[Suppl 2]: 6478, 1983 10.2337/diab.32.2.s64 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Oshima M, Shimizu M, Yamanouchi M, Toyama T, Hara A, Furuichi K, et al.: Trajectories of kidney function in diabetes: A clinicopathological update. Nat Rev Nephrol 17: 740750, 2021 10.1038/s41581-021-00462-y PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Anders HJ, Huber TB, Isermann B, Schiffer M: CKD in diabetes: Diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol 14: 361377, 2018 10.1038/s41581-018-0001-y PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Kidney Disease Improving Global Outcomes: KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int 98[4S]: S1s115, 2020 10.1016/j.kint.2020.06.019 PubMed

    • Search Google Scholar
    • Export Citation
  • 8

    Kidney Disease Improving Global Outcomes: KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int 102(5S): S1S127, 2022 10.1016/j.kint.2022.06.008 PubMed

    • Search Google Scholar
    • Export Citation
  • 9

    de Boer IH, Khunti K, Sadusky T, Tuttle KR, Neumiller JJ, Rhee CM, et al.: Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO)I. Diabetes Care 2022 Accession Number: 36189689 DOI: 10.2337/dci22-0027

  • 10

    International Diabetes Federation: Diabetes around the world in 2021. Available at: https://diabetesatlas.org/. Accessed July 29, 2022

  • 11

    Centers for Disease Control and Prevention: National Diabetes Statistics Report. Available at: https://www.cdc.gov/diabetes/data/statistics-report/index.html. Accessed July 29, 2022

    • Crossref
    • Export Citation
  • 12

    Centers for Disease Control and Prevention: Chronic Kidney Disease in the United States, 2021, Atlanta, GA, US Department of Health and Human Services, Centers for Disease Control and Prevention, 2021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Tuttle KR, Wong L, St Peter W, Roberts G, Rangaswami J, Mottl A, et al.: Moving from evidence to implementation of breakthrough therapies for diabetic kidney disease. Clin J Am Soc Nephrol 17: 10921103, 2022 10.2215/cjn.02980322 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Delgado C, Baweja M, Crews DC, Eneanya ND, Gadegbeku CA, Inker LA, et al.: A unifying approach for GFR estimation: Recommendations of the NKF-ASN Task Force on reassessing the inclusion of race in diagnosing kidney disease. J Am Soc Nephrol 32: 29943015, 2021 10.1681/asn.2021070988 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Inker LA, Eneanya ND, Coresh J, Tighiouart H, Wang D, Sang Y, et al.: New creatinine- and cystatin c-based equations to estimate GFR without race. N Engl J Med 385: 17371749, 2021 10.1056/NEJMoa2102953 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Folkerts K, Kelly AMB, Petruski-Ivleva N, Fried L, Blankenburg M, Gay A, et al.: Cardiovascular and renal outcomes in patients with type-2 diabetes and chronic kidney disease identified in a United States administrative claims database: A population cohort study. Nephron 145: 342352, 2021 10.1159/000513782 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Franchi F, James SK, Ghukasyan Lakic T, Budaj AJ, Cornel JH, Katus HA, et al.: Impact of diabetes mellitus and chronic kidney disease on cardiovascular outcomes and platelet P2Y(12) receptor antagonist effects in patients with acute coronary syndromes: Insights from the PLATO trial. J Am Heart Assoc 8: e011139, 2019 10.1161/jaha.118.011139 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18

    Neuen BL, Weldegiorgis M, Herrington WG, Ohkuma T, Smith M, Woodward M: Changes in GFR and albuminuria in routine clinical practice and the risk of kidney disease progression. Am J Kidney Dis 78: 35060.e1, 2021 10.1053/j.ajkd.2021.02.335 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Persson F, Bain SC, Mosenzon O, Heerspink HJL, Mann JFE, Pratley R, et al.: Changes in albuminuria predict cardiovascular and renal outcomes in type 2 diabetes: A post hoc analysis of the LEADER trial. Diabetes Care 44: 10201026, 2021 10.2337/dc20-1622 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Waijer SW, Xie D, Inzucchi SE, Zinman B, Koitka-Weber A, Mattheus M, et al.: Short-term changes in albuminuria and risk of cardiovascular and renal outcomes in type 2 diabetes mellitus: A post hoc analysis of the EMPA-REG OUTCOME trial. J Am Heart Assoc 9: e016976, 2020 10.1161/jaha.120.016976 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Mok Y, Ballew SH, Matsushita K: Chronic kidney disease measures for cardiovascular risk prediction. Atherosclerosis 335: 110118, 2021 10.1016/j.atherosclerosis.2021.09.007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    de Boer IH, Alpers CE, Azeloglu EU, Balis UGJ, Barasch JM, Barisoni L, et al.: Rationale and design of the Kidney Precision Medicine Project. Kidney Int 99: 498510, 2021 10.1016/j.kint.2020.08.039 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Poggio ED, McClelland RL, Blank KN, Hansen S, Bansal S, Bomback AS, et al.: Systematic review and meta-analysis of native kidney biopsy complications. Clin J Am Soc Nephrol 15: 15951602, 2020 10.2215/cjn.04710420 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    Di Vincenzo A, Bettini S, Russo L, Mazzocut S, Mauer M, Fioretto P: Renal structure in type 2 diabetes: Facts and misconceptions. J Nephrol 33: 901907, 2020 10.1007/s40620-020-00797-y PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Looker HC, Pyle L, Vigers T, Severn C, Saulnier PJ, Najafian B, et al.: Structural lesions on kidney biopsy in youth-onset and adult-onset type 2 diabetes. Diabetes Care 45: 436443, 2022 10.2337/dc21-1688 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Quinn GZ, Abedini A, Liu H, Ma Z, Cucchiara A, Havasi A, et al.: Renal histologic analysis provides complementary information to kidney function measurement for patients with early diabetic or hypertensive disease. J Am Soc Nephrol 32: 28632876, 2021 10.1681/asn.2021010044 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Brosius FC, Cherney D, Gee PO, Harris RC, Kliger AS, Tuttle KR, et al.: Transforming the care of patients with diabetic kidney disease. Clin J Am Soc Nephrol 16: 15901600, 2021 10.2215/cjn.18641120 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Machen L, Davenport CA, Oakes M, Bosworth HB, Patel UD, Diamantidis C: Race, income, and medical care spending patterns in high-risk primary care patients: Results from the STOP-DKD (Simultaneous Risk Factor Control Using Telehealth to Slow Progression of Diabetic Kidney Disease) Study. Kidney Med 4: 100382, 2022 10.1016/j.xkme.2021.08.016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Research Priorities for Kidney-Related Research-An Agenda to Advance Kidney Care: A position statement from the National Kidney Foundation. Am J Kidney Dis 79: 141152, 2022 10.1053/j.ajkd.2021.08.018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Ali I, Donne RL, Kalra PA: A validation study of the kidney failure risk equation in advanced chronic kidney disease according to disease aetiology with evaluation of discrimination, calibration and clinical utility. BMC Nephrol 22: 194, 2021 10.1186/s12882-021-02402-1 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Gregorich M, Heinzel A, Kammer M, Meiselbach H, Böger C, Eckardt KU, et al.: A prediction model for the decline in renal function in people with type 2 diabetes mellitus: Study protocol. Diagn Progn Res 5: 19, 2021 10.1186/s41512-021-00107-5 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Gao YM, Feng ST, Yang Y, Li ZL, Wen Y, Wang B, et al.: Development and external validation of a nomogram and a risk table for prediction of type 2 diabetic kidney disease progression based on a retrospective cohort study in China. Diabetes Metab Syndr Obes 15: 799811, 2022 10.2147/dmso.S352154 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Saputro SA, Pattanateepapon A, Pattanaprateep O, Aekplakorn W, McKay GJ, Attia J, et al.: External validation of prognostic models for chronic kidney disease among type 2 diabetes. J Nephrol 35: 16371653, 2022 10.1007/s40620-021-01220-w PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Maniruzzaman M, Islam MM, Rahman MJ, Hasan MAM, Shin J: Risk prediction of diabetic nephropathy using machine learning techniques: A pilot study with secondary data. Diabetes Metab Syndr 15: 102263, 2021 10.1016/j.dsx.2021.102263 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35

    Allen A, Iqbal Z, Green-Saxena A, Hurtado M, Hoffman J, Mao Q, et al.: Prediction of diabetic kidney disease with machine learning algorithms, upon the initial diagnosis of type 2 diabetes mellitus. BMJ Open Diabetes Res Care 10: 002560, 2022 10.1136/bmjdrc-2021-002560 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    Slieker RC, van der Heijden A, Siddiqui MK, Langendoen-Gort M, Nijpels G, Herings R, et al.: Performance of prediction models for nephropathy in people with type 2 diabetes: Systematic review and external validation study. BMJ 374: n2134, 2021 10.1136/bmj.n2134

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37

    Tuttle KR, Agarwal R, Alpers CE, Bakris GL, Brosius FC, Kolkhof P, et al.: Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int 102: 248260, 2022 10.1016/j.kint.2022.05.012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Piani F, Melena I, Tommerdahl KL, Nokoff N, Nelson RG, Pavkov ME, et al.: Sex-related differences in diabetic kidney disease: A review on the mechanisms and potential therapeutic implications. J Diabetes Complications 35: 107841, 2021 10.1016/j.jdiacomp.2020.107841 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    Shepard BD: Sex differences in diabetes and kidney disease: Mechanisms and consequences. Am J Physiol Renal Physiol 317: F456F462, 2019 10.1152/ajprenal.00249.2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40

    Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE: Human nephron number: Implications for health and disease. Pediatr Nephrol 26: 15291533, 2011 10.1007/s00467-011-1843-8 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    Charlton JR, Baldelomar EJ, Hyatt DM, Bennett KM: Nephron number and its determinants: A 2020 update. Pediatr Nephrol 36: 797807, 2021 10.1007/s00467-020-04534-2 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42

    Haugen AC, Schug TT, Collman G, Heindel JJ: Evolution of DOHaD: The impact of environmental health sciences. J Dev Orig Health Dis 6: 5564, 2015 10.1017/S2040174414000580 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    Luyckx VA, Brenner BM: Clinical consequences of developmental programming of low nephron number. Anat Rec (Hoboken) 303: 26132631, 2020 10.1002/ar.24270 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    Luyckx VA, Rule AD, Tuttle KR, Delanaye P, Liapis H, Gandjour A, et al.: Nephron overload as a therapeutic target to maximize kidney lifespan. Nat Rev Nephrol 18: 171183, 2022 10.1038/s41581-021-00510-7 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45

    Cachat F, Combescure C, Cauderay M, Girardin E, Chehade H: A systematic review of glomerular hyperfiltration assessment and definition in the medical literature. Clin J Am Soc Nephrol 10: 382389, 2015 10.2215/cjn.03080314 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46

    Trevisan R, Dodesini AR: The hyperfiltering kidney in diabetes. Nephron 136: 277280, 2017 10.1159/000448183 PubMed

  • 47

    Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW: Glomerular hyperfiltration: Definitions, mechanisms and clinical implications. Nat Rev Nephrol 8: 293300, 2012 10.1038/nrneph.2012.19 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48

    Shilpasree AS, Patil VS, Revanasiddappa M, Patil VP, Ireshnavar D: Renal dysfunction in prediabetes: Confirmed by glomerular hyperfiltration and albuminuria. J Lab Physicians 13: 257262, 2021 10.1055/s-0041-1731107 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49

    Cortinovis M, Perico N, Ruggenenti P, Remuzzi A, Remuzzi G: Glomerular hyperfiltration. Nat Rev Nephrol 18: 435451, 2022 10.1038/s41581-022-00559-y PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50

    Brenner BM, Lawler EV, Mackenzie HS: The hyperfiltration theory: A paradigm shift in nephrology. Kidney Int 49: 17741777, 1996 10.1038/ki.1996.265 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51

    Tonneijck L, Muskiet MH, Smits MM, van Bommel EJ, Heerspink HJ, van Raalte DH, et al.: Glomerular hyperfiltration in diabetes: Mechanisms, clinical significance, and treatment. J Am Soc Nephrol 28: 10231039, 2017 10.1681/asn.2016060666 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52

    Nelson RG, Knowler WC, Kretzler M, Lemley KV, Looker HC, Mauer M, et al.: Pima Indian contributions to our understanding of diabetic kidney disease. Diabetes 70: 16031616, 2021 10.2337/dbi20-0043 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53

    Saulnier PJ, Looker HC, Mauer M, Najafian B, Gand E, Ragot S, et al.: Intraglomerular dysfunction predicts kidney failure in type 2 diabetes. Diabetes 70: 23442352, 2021 10.2337/db21-0154 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54

    Fufaa GD, Weil EJ, Lemley KV, Knowler WC, Brosius 3rd FC, Yee B, et al.: Structural predictors of loss of renal function in American Indians with type 2 diabetes. Clin J Am Soc Nephrol 11: 254261, 2016 10.2215/cjn.05760515 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55

    Nicholas SB: Structural predictors of renal function decline. clin j am soc nephrol 11: 202204, 2016 10.2215/cjn.13431215 PubMed

  • 56

    Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al.: Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345: 861869, 2001 10.1056/NEJMoa011161 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57

    Lewis EJ, Hunsicker LG, Bain RP, Rohde RD: The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 329: 14561462, 1993 10.1056/nejm199311113292004 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58

    Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al.: Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380: 22952306, 2019 10.1056/NEJMoa1811744 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59

    Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al.: Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375: 323334, 2016 10.1056/NEJMoa1515920 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60

    Heerspink HJL, Stefansson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al.: Committees D-CT, investigators. dapagliflozin in patients with chronic kidney disease. N Engl J Med 383: 14361446, 2020 10.1056/NEJMoa2024816 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61

    Nicholas SB: Novel anti-inflammatory and anti-fibrotic agents for diabetic kidney disease-from bench to bedside. Adv Chronic Kidney Dis 28: 378390, 2021 10.1053/j.ackd.2021.09.010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62

    Kim AM, Tingen CM, Woodruff TK: Sex bias in trials and treatment must end. Nature 465: 688689, 2010 10.1038/465688a PubMed

  • 63

    Inada A, Inada O, Fujii NL, Nagafuchi S, Katsuta H, Yasunami Y, et al.: Adjusting the 17β-estradiol-to-androgen ratio ameliorates diabetic nephropathy. J Am Soc Nephrol 27: 30353050, 2016 10.1681/asn.2015070741 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64

    Wang Y, Zhang J, Zhang J, Wu Y, Zhang R, Ren H, et al.: Sex differences in biopsy-confirmed diabetic kidney disease. Front Endocrinol (Lausanne) 12: 670674, 2021 10.3389/fendo.2021.670674 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65

    Maric-Bilkan C: Sex differences in diabetic kidney disease. Mayo Clin Proc 95: 587599, 2020 10.1016/j.mayocp.2019.08.026 Epub 2020/03/07

  • 66

    Mills KT, Xu Y, Zhang W, Bundy JD, Chen CS, Kelly TN, et al.: A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int 88: 950957, 2015 10.1038/ki.2015.230 Epub 2015/07/30

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67

    Bjornstad P, Nehus E, El Ghormli L, Bacha F, Libman IM, McKay S, et al.: Insulin sensitivity and diabetic kidney disease in children and adolescents with type 2 diabetes: An observational analysis of data from the TODAY clinical trial. Am J Kidney Dis 71: 6574, 2018 10.1053/j.ajkd.2017.07.015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68

    Gembillo G, Cernaro V, Giuffrida AE, Russo G, Giandalia A, Siligato R, et al.: Gender differences in new hypoglycemic drug effects on renal outcomes: A systematic review. Expert Rev Clin Pharmacol 15: 323339, 2022 10.1080/17512433.2022.2055546 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69

    Raparelli V, Elharram M, Moura CS, Abrahamowicz M, Bernatsky S, Behlouli H, et al.: Sex differences in cardiovascular effectiveness of newer glucose-lowering drugs added to metformin in type 2 diabetes mellitus. J Am Heart Assoc 9: e012940, 2020 10.1161/jaha.119.012940 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70

    Ueda P, Svanström H, Melbye M, Eliasson B, Svensson AM, Franzén S, et al.: Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: Nationwide register based cohort study. BMJ 363: k4365, 2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71

    Wang Y, Zhao J, Qin Y, Yu Z, Zhang Y, Ning X, et al.: The specific alteration of gut microbiota in diabetic kidney diseases: A systematic review and meta-analysis. Front Immunol 13: 908219, 2022 10.3389/fimmu.2022.908219 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72

    Kanbay M, Onal EM, Afsar B, Dagel T, Yerlikaya A, Covic A, et al.: The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus. Int Urol Nephrol 50: 14531466, 2018 10.1007/s11255-018-1873-2 PubMed

    • Search Google Scholar
    • Export Citation
  • 73

    Richter CK, Skulas-Ray AC, Champagne CM, Kris-Etherton PM: Plant protein and animal proteins: Do they differentially affect cardiovascular disease risk? Adv Nutr 6: 712728, 2015 10.3945/an.115.009654 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74

    Abbasi B, Ghiasvand R, Mirlohi M: Kidney function improvement by soy milk containing Lactobacillus plantarum A7 in type 2 diabetic patients with nephropathy: A double-blinded randomized controlled trial. Iran J Kidney Dis 11: 3643, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75

    Zhong C, Dai Z, Chai L, Wu L, Li J, Guo W, et al.: The change of gut microbiota-derived short-chain fatty acids in diabetic kidney disease. J Clin Lab Anal 35: e24062, 2021 10.1002/jcla.24062 PubMed

    • Search Google Scholar
    • Export Citation
  • 76

    Thipsawat S: Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diab Vasc Dis Res 18: 14791641211058856, 2021 10.1177/14791641211058856 PubMed

    • Search Google Scholar
    • Export Citation
  • 77

    Çuhadar S: Serum cystatin C as a biomarker. In: Biomarkers in Kidney Disease, edited by Patel VB, Dordrecht, The Netherlands, Springer Netherlands, 2015, pp 117

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78

    Pavkov ME, Collins AJ, Coresh J, Nelson RG: Kidney disease in diabetes. In: Diabetes in America, edited by Cowie CC, Casagrande SS, Menke A, Cissell MA, Eberhardt MS, Meigs JB, et al., Bethesda, MD, National Institute of Diabetes and Digestive and Kidney Diseases, 2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79

    Takir M, Unal AD, Kostek O, Bayraktar N, Demirag NG: Cystatin-C and TGF-β levels in patients with diabetic nephropathy. Nefrologia 36: 653659, 2016 10.1016/j.nefro.2016.06.011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80

    Barutta F, Bellini S, Canepa S, Durazzo M, Gruden G: Novel biomarkers of diabetic kidney disease: Current status and potential clinical application. Acta Diabetol 58: 819830, 2021 10.1007/s00592-020-01656-9 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81

    Jung CY, Yoo TH: Pathophysiologic mechanisms and potential biomarkers in diabetic kidney disease. Diabetes Metab J 46: 181197, 2022 10.4093/dmj.2021.0329 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82

    de Boer IH, Caramori ML, Chan JCN, Heerspink HJL, Hurst C, Khunti K, et al.: Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline: Evidence-based advances in monitoring and treatment. Kidney Int 98: 839848, 2020 10.1016/j.kint.2020.06.024 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83

    Zhuo M, Li J, Buckley LF, Tummalapalli SL, Mount DB, Steele DJR, et al.: Prescribing patterns of sodium-glucose cotransporter-2 inhibitors in patients with CKD: A cross-sectional registry analysis. Kidney360 3: 455464, 2022 10.34067/kid.0007862021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84

    Tuttle KR, Alicic RZ, Duru OK, Jones CR, Daratha KB, Nicholas SB, et al.: Clinical characteristics of and risk factors for chronic kidney disease among adults and children: An analysis of the CURE-CKD registry. JAMA Netw Open 2: e1918169, 2019 10.1001/jamanetworkopen.2019.18169 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85

    McCoy IE, Han J, Montez-Rath ME, Chertow GM: Barriers to ACEI/ARB use in proteinuric chronic kidney disease: An observational study. Mayo Clin Proc 96: 21142122, 2021 10.1016/j.mayocp.2020.12.038 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86

    Martínez-Castelao A, Soler MJ, Górriz Teruel JL, Navarro-González JF, Fernandez-Fernandez B, de Alvaro Moreno F, et al.: Optimizing the timing of nephrology referral for patients with diabetic kidney disease. Clin Kidney J 14: 58, 2021 10.1093/ckj/sfaa125 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87

    Ino J, Kasama E, Kodama M, Sato K, Eizumi H, Kawashima Y, et al.: Multidisciplinary team care delays the initiation of renal replacement therapy in diabetes: A five-year prospective, single-center study. Intern Med 60: 20172026, 2021 10.2169/internalmedicine.4927-20 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88

    Helou N, Talhouedec D, Zumstein-Shaha M, Zanchi A: A multidisciplinary approach for improving quality of life and self-management in diabetic kidney disease: A crossover study. J Clin Med 9: 2160, 2020 10.3390/jcm9072160 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89

    Low S, Lim SC, Wang J, Yeoh LY, Liu YL, Lim EK, et al.: Long-term outcomes of patients with type 2 diabetes attending a multidisciplinary diabetes kidney disease clinic. J Diabetes 10: 572580, 2018 10.1111/1753-0407.12626 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90

    Thanachayanont T, Chanpitakkul M, Hengtrakulvenit J, Watcharakanon P, Wisansak W, Tancharoensukjit T, et al.: Effectiveness of integrated care on delaying chronic kidney disease progression in rural communities of Thailand (ESCORT-2) trials. Nephrology (Carlton) 26: 333340, 2021 10.1111/nep.13849 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91

    Mottl AK, Alicic R, Argyropoulos C, Brosius FC, Mauer M, Molitch M, et al.: KDOQI US commentary on the KDIGO 2020 clinical practice guideline for diabetes management in CKD. Am J Kidney Dis 79: 457479, 2022 10.1053/j.ajkd.2021.09.010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92

    Kidney Disease Improving Global Outcomes: KDIGO 2021 clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int 99[3s]: S1s87, 2021 10.1016/j.kint.2020.11.003 33637192

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93

    American Diabetes Association Professional Practice Committee: 10. Cardiovascular disease and risk management: Standards of medical care in diabetes-2022. Diabetes Care 45[Suppl 1]: S144S174, 2022 10.2337/dc22-S010 34964815

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94

    Leon SJ, Whitlock R, Rigatto C, Komenda P, Bohm C, Sucha E, et al.: Hyperkalemia-related discontinuation of renin-angiotensin-aldosterone system inhibitors and clinical outcomes in CKD: A population-based cohort study. Am J Kidney Dis 80: 164173.e1, 2022 10.1053/j.ajkd.2022.01.002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95

    Chen JY, Tsai IJ, Pan HC, Liao HW, Neyra JA, Wu VC, et al.: The impact of angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers on clinical outcomes of acute kidney disease patients: A systematic review and meta-analysis. Front Pharmacol 12: 665250, 2021 10.3389/fphar.2021.665250 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96

    van der Aart-van der Beek AB, de Boer RA, Heerspink HJL: Kidney and heart failure outcomes associated with SGLT2 inhibitor use. Nat Rev Nephrol 18: 294306, 2022 10.1038/s41581-022-00535-6 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97

    Waijer SW, Vart P, Cherney DZI, Chertow GM, Jongs N, Langkilde AM, et al.: Effect of dapagliflozin on kidney and cardiovascular outcomes by baseline KDIGO risk categories: A post hoc analysis of the DAPA-CKD trial. Diabetologia 65: 10851097, 2022 10.1007/s00125-022-05694-6 PubMed

    • Search Google Scholar
    • Export Citation
  • 98

    Draznin B, Aroda VR, Bakris G, Benson G, Brown FM, Freeman R, et al.: 11. Chronic kidney disease and risk management: Standards of medical care in diabetes-2022. Diabetes Care 45[Suppl 1]: S175S184, 2022 10.2337/dc22-S011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99

    Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al.: 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 140: e596e646, 2019 10.1161/cir.0000000000000678 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100

    Dienemann T, Fujii N, Li Y, Govani S, Kosaraju N, Bloom RD, et al.: Long-term patient survival and kidney allograft survival in post-transplant diabetes mellitus: A single-center retrospective study. Transpl Int 29: 10171028, 2016 10.1111/tri.12807 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101

    Cooper L, Oz N, Fishman G, Shohat T, Rahamimov R, Mor E, et al.: New onset diabetes after kidney transplantation is associated with increased mortality: A retrospective cohort study Diabetes Metab Res Rev 33: 2017 10.1002/dmrr.2920 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 102

    Lim JH, Kwon S, Jeon Y, Kim YH, Kwon H, Kim YS, et al.: The efficacy and safety of SGLT2 inhibitor in diabetic kidney transplant recipients. Transplantation 106: 404412, 2022 10.1097/tp.0000000000004228 +

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 103

    Patel N, Hindi J, Farouk SS: Sodium-glucose cotransporter 2 inhibitors and kidney transplantation: What are we waiting for? Kidney360 2: 11741178, 2021 10.34067/kid.0000732021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 104

    Agarwal R, Kolkhof P, Bakris G, Bauersachs J, Haller H, Wada T, et al.: Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur Heart J 42: 152161, 2021 10.1093/eurheartj/ehaa736 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105

    Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al.: Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med 383: 22192229, 2020 10.1056/NEJMoa2025845 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 106

    Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, et al.: Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med 385: 22522263, 2021 10.1056/NEJMoa2110956 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 107

    Agarwal R, Filippatos G, Pitt B, Anker SD, Rossing P, Joseph A, et al.: Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: The FIDELITY pooled analysis. Eur Heart J 43: 474484, 2022 10.1093/eurheartj/ehab777 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 108

    Provenzano M, Puchades MJ, Garofalo C, Jongs N, D’Marco L, Andreucci M, et al.: Albuminuria-lowering effect of dapagliflozin, eplerenone, and their combination in patients with chronic kidney disease: A randomized cross-over clinical trial. J Am Soc Nephrol 33: 15691580, 2022 10.1681/asn.2022020207 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 109

    Chintam K, Chang AR: Strategies to treat obesity in patients with CKD. Am J Kidney Dis 77: 427439, 2021 10.1053/j.ajkd.2020.08.016 PubMed

    • Search Google Scholar
    • Export Citation
  • 110

    Li J, Albajrami O, Zhuo M, Hawley CE, Paik JM: Decision algorithm for prescribing SGLT2 inhibitors and GLP-1 receptor agonists for diabetic kidney disease. Clin J Am Soc Nephrol 15: 16781688, 2020 10.2215/cjn.02690320 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 111

    Stierman B AJ, Carroll MD, Chen TC, Davy O, Fink S, Fryar C, Gu Q, Hales CM, Hughes JP, Ostchega Y, Storandt RJ, Akinbami LJ: National Health and Nutrition Examination Survey 2017–March 2020 Prepandemic Data Files Development of Files and Prevalence Estimates for Selected Health Outcomes. Natl Health Stat Report 2021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 112

    Chang AR, Grams ME, Ballew SH, Bilo H, Correa A, Evans M, et al.: Adiposity and risk of decline in glomerular filtration rate: Meta-analysis of individual participant data in a global consortium. BMJ 364: k5301, 2019 10.1136/bmj.k5301 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 113

    Wei L, Li Y, Yu Y, Xu M, Chen H, Li L, et al.: Obesity-related glomerulopathy: From mechanism to therapeutic target. Diabetes Metab Syndr Obes 14: 43714380, 2021 10.2147/dmso.S334199 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 114

    Chagnac A, Zingerman B, Rozen-Zvi B, Herman-Edelstein M: Consequences of glomerular hyperfiltration: The role of physical forces in the pathogenesis of chronic kidney disease in diabetes and obesity. Nephron 143: 3842, 2019 10.1159/000499486 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 115

    Friedman AN, Kaplan LM, le Roux CW, Schauer PR: Management of obesity in adults with CKD. J Am Soc Nephrol 32: 777790, 2021 10.1681/asn.2020101472 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 116

    Docherty NG, le Roux CW: Bariatric surgery for the treatment of chronic kidney disease in obesity and type 2 diabetes mellitus. Nat Rev Nephrol 16: 709720, 2020 10.1038/s41581-020-0323-4 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 117

    Coleman KJ, Shu YH, Fischer H, Johnson E, Yoon TK, Taylor B, et al.: Bariatric surgery and risk of death in persons with chronic kidney disease. Ann Surg 276: 784791, 2022 10.1097/sla.0000000000004851 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 118

    Shlipak MG, Sheshadri A, Hsu FC, Chen SH, Jotwani V, Tranah G, et al.: Effect of structured, moderate exercise on kidney function decline in sedentary older adults: An ancillary analysis of the LIFE study randomized clinical trial. JAMA Intern Med 182: 650659, 2022 10.1001/jamainternmed.2022.1449 PubMed

    • Search Google Scholar
    • Export Citation
  • 119

    Cardoso DF, Marques EA, Leal DV, Ferreira A, Baker LA, Smith AC, et al.: Impact of physical activity and exercise on bone health in patients with chronic kidney disease: A systematic review of observational and experimental studies. BMC Nephrol 21: 334, 2020 10.1186/s12882-020-01999-z PubMed

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 268 268 196
Full Text Views 319 319 248
PDF Downloads 368 368 321