Primary Nephritic Syndromes (IgA Nephropathy and Complement- and Ig-Mediated Glomerular Disease with MPGN Histology)
By:
Wooin AhnDivision of Nephrology, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York

Search for other papers by Wooin Ahn in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1

    Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H, Eitner F, et al.: Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet 8: 1002765, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    Yu GZ, Guo L, Dong JF, Shi SF, Liu LJ, Wang JW, et al.: Persistent hematuria and kidney disease progression in IgA nephropathy: A cohort study. Am J Kidney Dis 76: 9099, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3

    Rodrigues JC, Haas M, Reich HN: IgA nephropathy. Clin J Am Soc Nephrol 12: 677686, 2017 PubMed

  • 4

    Barratt J, Feehally J: Treatment of IgA nephropathy. Kidney Int 69: 19341938, 2006 PubMed

  • 5

    Herlitz LC, Bomback AS, Stokes MB, Radhakrishnan J, D’Agati VD, Markowitz GS: IgA nephropathy with minimal change disease. Clin J Am Soc Nephrol 9: 10331039, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Mariani LH, Bomback AS, Canetta PA, Flessner MF, Helmuth M, Hladunewich MA, et al.; CureGN Consortium: CureGN study rationale, design, and methods: Establishing a large prospective observational study of glomerular disease. Am J Kidney Dis 73: 218229, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Selewski DT, Ambruzs JM, Appel GB, Bomback AS, Matar RB, Cai Y, et al.; CureGN Consortium: Clinical characteristics and treatment patterns of children and adults with IgA nephropathy or IgA vasculitis: Findings from the CureGN Study. Kidney Int Rep 3: 13731384, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Delbarba E, Marasa M, Canetta PA, Piva SE, Chatterjee D, Kil BH, et al.; CureGN Consortium: Persistent disease activity in patients with long-standing glomerular disease. Kidney Int Rep 5: 860871, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Chen S, Tang Z, Xiang H, Li X, Chen H, Zhang H, et al.: Etiology and outcome of crescentic glomerulonephritis from a single center in China: A 10-year review. Am J Kidney Dis 67: 376383, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Shima Y, Nakanishi K, Hama T, Mukaiyama H, Sato M, Tanaka Y, et al.: Crescentic IgA nephropathy in children. Pediatr Nephrol 35: 10051014, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Bellur SS, Lepeytre F, Vorobyeva O, Troyanov S, Cook HT, Roberts IS; International IgA Nephropathy Working Group: Evidence from the Oxford Classification cohort supports the clinical value of subclassification of focal segmental glomerulosclerosis in IgA nephropathy. Kidney Int 91: 235243, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Cattran DC, Coppo R, Cook HT, Feehally J, Roberts IS, Troyanov S, et al.; Working Group of the International IgA Nephropathy Network and the Renal Pathology Society: The Oxford classification of IgA nephropathy: Rationale, clinicopathological correlations, and classification. Kidney Int 76: 534545, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Trimarchi H, Barratt J, Cattran DC, Cook HT, Coppo R, Haas M, et al.; IgAN Classification Working Group of the International IgA Nephropathy Network and the Renal Pathology Society; Conference Participants: Oxford Classification of IgA nephropathy 2016: An update from the IgA Nephropathy Classification Working Group. Kidney Int 91: 10141021, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Jullien P, Laurent B, Berthoux F, Masson I, Dinic M, Claisse G, et al.: Repeat renal biopsy improves the Oxford classification-based prediction of immunoglobulin A nephropathy outcome. Nephrol Dial Transplant 35: 11791186, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Cai Q, Shi S, Wang S, Ren Y, Hou W, Liu L, et al.: Microangiopathic lesions in IgA nephropathy: A cohort study. Am J Kidney Dis 74: 629639, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Satoskar AA, Suleiman S, Ayoub I, Hemminger J, Parikh S, Brodsky SV, et al.: Staphylococcus infection-associated GN: Spectrum of IgA staining and prevalence of ANCA in a single-center cohort. Clin J Am Soc Nephrol 12: 3949, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Satoskar AA, Molenda M, Scipio P, Shim R, Zirwas M, Variath RS, et al.: Henoch-Schönlein purpura-like presentation in IgA-dominant Staphylococcus infection - associated glomerulonephritis - a diagnostic pitfall [published correction appears in Clin Nephrol 79: 504, 2013]. Clin Nephrol 79: 302312, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18

    Brodsky SV, Nadasdy T, Cassol C, Satoskar A: IgA staining patterns differentiate between IgA nephropathy and IgA-dominant infection-associated glomerulonephritis. Kidney Int Rep 5: 909911, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Reily C, Stewart TJ, Renfrow MB, Novak J: Glycosylation in health and disease. Nat Rev Nephrol 15: 346366, 2019 PubMed

  • 20

    Novak J, Barratt J, Julian BA, Renfrow MB: Aberrant glycosylation of the IgA1 molecule in IgA nephropathy. Semin Nephrol 38: 461476, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Gharavi AG, Moldoveanu Z, Wyatt RJ, Barker CV, Woodford SY, Lifton RP, et al.: Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol 19: 10081014, 2008 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    Kiryluk K, Li Y, Moldoveanu Z, Suzuki H, Reily C, Hou P, et al.: GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet 13: 1006609, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Gale DP, Molyneux K, Wimbury D, Higgins P, Levine AP, Caplin B, et al.: Galactosylation of IgA1 is associated with common variation in C1GALT1. J Am Soc Nephrol 28: 21582166, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    Kiryluk K, Li Y, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, et al.: Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet 46: 11871196, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Bhutani G, Nasr SH, Said SM, Sethi S, Fervenza FC, Morice WG, et al.: Hematologic characteristics of proliferative glomerulonephritides with nonorganized monoclonal immunoglobulin deposits. Mayo Clin Proc 90: 587596, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Thompson A, Carroll K, A Inker L, Floege J, Perkovic V, Boyer-Suavet S, et al.: Proteinuria reduction as a surrogate end point in trials of IgA nephropathy. Clin J Am Soc Nephrol 14: 469481, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Knoop T, Vikse BE, Mwakimonga A, Leh S, Bjørneklett R: Long-term outcome in 145 patients with assumed benign immunoglobulin A nephropathy. Nephrol Dial Transplant 32: 18411850, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Bobart SA, Alexander MP, Shawwa K, Vaughan LE, Ghamrawi R, Sethi S, et al.: The association of microhematuria with mesangial hypercellularity, endocapillary hypercellularity, crescent score and renal outcomes in immunoglobulin A nephropathy. Nephrol Dial Transplant 36: 840847, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Sim JJ, Bhandari SK, Batech M, Hever A, Harrison TN, Shu YH, et al.: End-stage renal disease and mortality outcomes across different glomerulonephropathies in a large diverse US population. Mayo Clin Proc 93: 167178, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Barbour SJ, Coppo R, Zhang H, Liu ZH, Suzuki Y, Matsuzaki K, et al.; International IgA Nephropathy Network: Evaluating a new international risk-prediction tool in IgA nephropathy. JAMA Intern Med 179: 942952, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Barbour SJ, Coppo R, Zhang H, Liu ZH, Suzuki Y, Matsuzaki K, et al.; International IgA Nephropathy Network: Application of the International IgA Nephropathy Prediction Tool one or two years post-biopsy. Kidney Int 102: 160172, 2022 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Rovin BH, Adler SG, Barratt J, Bridoux F, Burdge KA, Chan TM, et al.: Executive summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases. Kidney Int 100: 753779, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Coppo R, D’Arrigo G, Tripepi G, Russo ML, Roberts ISD, Bellur S, et al.; ERA-EDTA Immunonephrology Working Group: Is there long-term value of pathology scoring in immunoglobulin A nephropathy? A validation study of the Oxford Classification for IgA Nephropathy (VALIGA) update. Nephrol Dial Transplant 35: 10021009, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Jarrick S, Lundberg S, Welander A, Carrero JJ, Höijer J, Bottai M, et al.: Mortality in IgA nephropathy: A nationwide population-based cohort study. J Am Soc Nephrol 30: 866876, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35

    Praga M, Gutiérrez E, González E, Morales E, Hernández E: Treatment of IgA nephropathy with ACE inhibitors: A randomized and controlled trial. J Am Soc Nephrol 14: 15781583, 2003 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    Kidney Disease: Improving Global Outcomes Glomerular Diseases Work Group: KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Available at https://kdigo.org/guidelines/gd/. Accessed November 25, 2022

    • Search Google Scholar
    • Export Citation
  • 37

    Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al.; DAPA-CKD Trial Committees and Investigators: Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383: 14361446, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Hirano K, Kawamura T, Tsuboi N, Okonogi H, Miyazaki Y, Ikeda M, et al.: The predictive value of attenuated proteinuria at 1 year after steroid therapy for renal survival in patients with IgA nephropathy. Clin Exp Nephrol 17: 555562, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    Russo E, Verzola D, Salvidio G, Bonino B, Picciotto D, Drovandi S, et al.: Long-term blood pressure behavior and progression to end-stage renal disease in patients with immunoglobulin A nephropathy: A single-center observational study in Italy. J Hypertens 38: 925935, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40

    Kanno Y, Okada H, Saruta T, Suzuki H: Blood pressure reduction associated with preservation of renal function in hypertensive patients with IgA nephropathy: A 3-year follow-up. Clin Nephrol 54: 360365, 2000 PubMed

    • Search Google Scholar
    • Export Citation
  • 41

    Anders HJ, Davis JM, Thurau K: Nephron protection in diabetic kidney disease. N Engl J Med 375: 20962098, 2016 PubMed

  • 42

    Rauen T, Eitner F, Fitzner C, Sommerer C, Zeier M, Otte B, et al.; STOP-IgAN Investigators: Intensive supportive care plus immunosuppression in IgA nephropathy. N Engl J Med 373: 22252236, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    Rauen T, Wied S, Fitzner C, Eitner F, Sommerer C, Zeier M, et al.; STOP-IgAN Investigators: After ten years of follow-up, no difference between supportive care plus immunosuppression and supportive care alone in IgA nephropathy. Kidney Int 98: 10441052, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    Lv J, Zhang H, Wong MG, Jardine MJ, Hladunewich M, Jha V, et al.; TESTING Study Group: Effect of oral methylprednisolone on clinical outcomes in patients with IgA nephropathy: The TESTING randomized clinical trial. JAMA 318: 432442, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45

    Lv J, Wong MG, Hladunewich MA, Jha V, Hooi LS, Monaghan H, et al.; TESTING Study Group: Effect of oral methylprednisolone on decline in kidney function or kidney failure in patients with IgA nephropathy: The TESTING randomized clinical trial. JAMA 327: 18881898, 2022 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46

    Fellström BC, Barratt J, Cook H, Coppo R, Feehally J, de Fijter JW, et al.; NEFIGAN Trial Investigators: Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): A double-blind, randomised, placebo-controlled phase 2b trial. Lancet 389: 21172127, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47

    Zand L, Canetta P, Lafayette R, Aslam N, Jan N, Sethi S, et al.: An open-label pilot study of adrenocorticotrophic hormone in the treatment of IgA nephropathy at high risk of progression. Kidney Int Rep 5: 5865, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48

    Xiaowei L, Bo W, Li L, Peng Z: Comparison of the effects of valsartan plus activated vitamin D versus valsartan alone in IgA nephropathy with moderate proteinuria. Int Urol Nephrol 52: 129136, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49

    Allen PJ, Chadban SJ, Craig JC, Lim WH, Allen RDM, Clayton PA, et al.: Recurrent glomerulonephritis after kidney transplantation: Risk factors and allograft outcomes. Kidney Int 92: 461469, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50

    O’Shaughnessy MM, Liu S, Montez-Rath ME, Lenihan CR, Lafayette RA, Winkelmayer WC: Kidney transplantation outcomes across GN subtypes in the United States. J Am Soc Nephrol 28: 632644, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51

    Kousios A, Duncan N, Charif R, Tam FWK, Levy J, Cook HT, et al.: Autologous stem cell transplant for the treatment of type I crystal cryoglobulinemic glomerulonephritis caused by monoclonal gammopathy of renal significance (MGRS). Kidney Int Rep 4: 13421348, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52

    Avasare RS, Canetta PA, Bomback AS, Marasa M, Caliskan Y, Ozluk Y, et al.: Mycophenolate mofetil in combination with steroids for treatment of C3 glomerulopathy: A case series. Clin J Am Soc Nephrol 13: 406413, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53

    Bomback AS, Santoriello D, Avasare RS, Regunathan-Shenk R, Canetta PA, Ahn W, et al.: C3 glomerulonephritis and dense deposit disease share a similar disease course in a large United States cohort of patients with C3 glomerulopathy. Kidney Int 93: 977985, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54

    Medjeral-Thomas N, Malik TH, Patel MP, Toth T, Cook HT, Tomson C, et al.: A novel CFHR5 fusion protein causes C3 glomerulopathy in a family without Cypriot ancestry. Kidney Int 85: 933937, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55

    Ravindran A, Fervenza FC, Smith RJH, Sethi S: C3 glomerulonephritis with a severe crescentic phenotype. Pediatr Nephrol 32: 16251633, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56

    Riedl M, Thorner P, Licht C: C3 glomerulopathy. Pediatr Nephrol 32: 4357, 2017 PubMed

  • 57

    Caravaca-Fontán F, Trujillo H, Alonso M, Díaz-Encarnación M, Cabello V, Ariceta G, et al.; C3G Study Group of the Spanish Group for the Study of Glomerular Diseases (GLOSEN): Validation of a histologic scoring index for C3 glomerulopathy. Am J Kidney Dis 77: 684695, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58

    Smith RJH, Appel GB, Blom AM, Cook HT, D’Agati VD, Fakhouri F, et al.: C3 glomerulopathy - understanding a rare complement-driven renal disease. Nat Rev Nephrol 15: 129143, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59

    Gomes-Alves I, Castro-Ferreira I: C3 glomerulonephritis associated with monoclonal gammopathy of renal significance. Acta Med Port 34: 372377, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60

    Togarsimalemath SK, Sethi SK, Duggal R, Le Quintrec M, Jha P, Daniel R, et al.: A novel CFHR1-CFHR5 hybrid leads to a familial dominant C3 glomerulopathy. Kidney Int 92: 876887, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61

    Tortajada A, Yébenes H, Abarrategui-Garrido C, Anter J, García-Fernández JM, Martínez-Barricarte R, et al.: C3 glomerulopathy-associated CFHR1 mutation alters FHR oligomerization and complement regulation. J Clin Invest 123: 24342446, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62

    Wang X, Van Lookeren Campagne M, Katschke Jr. KJ, Gullipalli D, Miwa T, Ueda Y, et al.: Prevention of fatal C3 glomerulopathy by recombinant complement receptor of the Ig superfamily. J Am Soc Nephrol 29: 20532059, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63

    Andeen NK, Yang HY, Dai DF, MacCoss MJ, Smith KD: DnaJ homolog subfamily B member 9 is a putative autoantigen in fibrillary GN. J Am Soc Nephrol 29: 231239, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64

    Hogan JJ, Alexander MP, Leung N: Dysproteinemia and the kidney: Core curriculum 2019. Am J Kidney Dis 74: 822836, 2019 PubMed

  • 65

    Ravindran A, Fervenza FC, Smith RJH, Sethi S: C3 glomerulopathy associated with monoclonal Ig is a distinct subtype. Kidney Int 94: 178186, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66

    Levine AP, Chan MMY, Sadeghi-Alavijeh O, Wong EKS, Cook HT, Ashford S, et al.; MPGN/DDD/C3 Glomerulopathy Rare Disease Group; NIHR BioResource: Large-scale whole-genome sequencing reveals the genetic architecture of primary membranoproliferative GN and C3 glomerulopathy. J Am Soc Nephrol 31: 365373, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67

    Chauvet S, Frémeaux-Bacchi V, Petitprez F, Karras A, Daniel L, Burtey S, et al.: Treatment of B-cell disorder improves renal outcome of patients with monoclonal gammopathy-associated C3 glomerulopathy. Blood 129: 14371447, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68

    Vivarelli M, Pasini A, Emma F: Eculizumab for the treatment of dense-deposit disease. N Engl J Med 366: 11631165, 2012 PubMed

  • 69

    Bomback AS, Smith RJ, Barile GR, Zhang Y, Heher EC, Herlitz L, et al.: Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin J Am Soc Nephrol 7: 748756, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70

    Ruggenenti P, Daina E, Gennarini A, Carrara C, Gamba S, Noris M, et al.; EAGLE Study Group: C5 convertase blockade in membranoproliferative glomerulonephritis: A single-arm clinical trial. Am J Kidney Dis 74: 224238, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71

    Le Quintrec M, Lapeyraque AL, Lionet A, Sellier-Leclerc AL, Delmas Y, Baudouin V, et al.: Patterns of clinical response to eculizumab in patients with C3 glomerulopathy. Am J Kidney Dis 72: 8492, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72

    Rabasco C, Cavero T, Román E, Rojas-Rivera J, Olea T, Espinosa M, et al.; Spanish Group for the Study of Glomerular Diseases (GLOSEN): Effectiveness of mycophenolate mofetil in C3 glomerulonephritis. Kidney Int 88: 11531160, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73

    Rovin BH, Caster DJ, Cattran DC, Gibson KL, Hogan JJ, Moeller MJ, et al.; Conference Participants: Management and treatment of glomerular diseases (part 2): Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 95: 281295, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74

    Békássy ZD, Kristoffersson AC, Rebetz J, Tati R, Olin AI, Karpman D: Aliskiren inhibits renin-mediated complement activation. Kidney Int 94: 689700, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75

    Leung N, Bridoux F, Batuman V, Chaidos A, Cockwell P, D’Agati VD, et al.: The evaluation of monoclonal gammopathy of renal significance: A consensus report of the International Kidney and Monoclonal Gammopathy Research Group. Nat Rev Nephrol 15: 4559, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76

    Zand L, Lorenz EC, Cosio FG, Fervenza FC, Nasr SH, Gandhi MJ, et al.: Clinical findings, pathology, and outcomes of C3GN after kidney transplantation. J Am Soc Nephrol 25: 11101117, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77

    Regunathan-Shenk R, Avasare RS, Ahn W, Canetta PA, Cohen DJ, Appel GB, et al.: Kidney transplantation in C3 glomerulopathy: A case series. Am J Kidney Dis 73: 316323, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78

    Loirat C, Fakhouri F, Ariceta G, Besbas N, Bitzan M, Bjerre A, et al.; HUS International: An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr Nephrol 31: 1539, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79

    Scully M, Cataland S, Coppo P, de la Rubia J, Friedman KD, Kremer Hovinga J, et al.; International Working Group for Thrombotic Thrombocytopenic Purpura: Consensus on the standardization of terminology in thrombotic thrombocytopenic purpura and related thrombotic microangiopathies. J Thromb Haemost 15: 312322, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80

    Baghli S, Abendroth C, Farooq U, Schaub JA: Atypical presentation of pregnancy-related hemolytic uremic syndrome. Am J Kidney Dis 72: 451456, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81

    Sallée M, Ismail K, Fakhouri F, Vacher-Coponat H, Moussi-Francés J, Frémaux-Bacchi V, et al.: Thrombocytopenia is not mandatory to diagnose haemolytic and uremic syndrome. BMC Nephrol 14: 3, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82

    De Serres SA, Isenring P: Athrombocytopenic thrombotic microangiopathy, a condition that could be overlooked based on current diagnostic criteria. Nephrol Dial Transplant 24: 10481050, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83

    Noris M, Remuzzi G: Cardiovascular complications in atypical haemolytic uraemic syndrome. Nat Rev Nephrol 10: 174180, 2014 PubMed

  • 84

    Fakhouri F, Vercel C, Frémeaux-Bacchi V: Obstetric nephrology: AKI and thrombotic microangiopathies in pregnancy. Clin J Am Soc Nephrol 7: 21002106, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85

    Fakhouri F, Roumenina L, Provot F, Sallée M, Caillard S, Couzi L, et al.: Pregnancy-associated hemolytic uremic syndrome revisited in the era of complement gene mutations. J Am Soc Nephrol 21: 859867, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86

    Huerta A, Arjona E, Portoles J, Lopez-Sanchez P, Rabasco C, Espinosa M, et al.: A retrospective study of pregnancy-associated atypical hemolytic uremic syndrome. Kidney Int 93: 450459, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87

    Gaggl M, Aigner C, Csuka D, Szilágyi Á, Prohászka Z, Kain R, et al.: Maternal and fetal outcomes of pregnancies in women with atypical hemolytic uremic syndrome. J Am Soc Nephrol 29: 10201029, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88

    Ramachandran R, Nayak S, Anakutti HP, Yadav AK, Nada R, Jain V, et al.: Postpartum renal cortical necrosis is associated with atypical hemolytic uremic syndrome in developing countries. Kidney Int Rep 4: 420424, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89

    Gavriilaki E, Brodsky RA: Complementopathies and precision medicine. J Clin Invest 130: 21522163, 2020 PubMed

  • 90

    Goodship TH, Cook HT, Fakhouri F, Fervenza FC, Frémeaux-Bacchi V, Kavanagh D, et al.; Conference Participants: Atypical hemolytic uremic syndrome and C3 glomerulopathy: Conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int 91: 539551, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91

    Noris M, Caprioli J, Bresin E, Mossali C, Pianetti G, Gamba S, et al.: Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol 5: 18441859, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92

    de Jong S, Volokhina EB, de Breuk A, Nilsson SC, de Jong EK, van der Kar NCAJ, et al.: Effect of rare coding variants in the CFI gene on Factor I expression levels. Hum Mol Genet 29: 23132324, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93

    Ravindran A, Go RS, Fervenza FC, Sethi S: Thrombotic microangiopathy associated with monoclonal gammopathy. Kidney Int 91: 691698, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94

    Legendre CM, Licht C, Muus P, Greenbaum LA, Babu S, Bedrosian C, et al.: Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med 368: 21692181, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95

    Cassol CA, Brodsky SV, Satoskar AA, Blissett AR, Cataland S, Nadasdy T: Eculizumab deposits in vessel walls in thrombotic microangiopathy. Kidney Int 96: 761768, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96

    Duval A, Olagne J, Cognard N, Gautier Vargas G, Joly M, Perrin P, et al.: Pregnancy in a kidney transplant woman under treatment with eculizumab for atypical hemolytic uremic syndrome: Is it safe? Kidney Int Rep 4: 733739, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97

    Cheung CK, Nettleton KJ, Williams ML, Page AS, Littler Y, Goodlife A, et al.: Use of eculizumab during pregnancy in kidney transplant recipients with atypical HUS. Kidney Int Rep 4: 1658, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98

    Fakhouri F, Fila M, Provôt F, Delmas Y, Barbet C, Châtelet V, et al.: Pathogenic variants in complement genes and risk of atypical hemolytic uremic syndrome relapse after eculizumab discontinuation. Clin J Am Soc Nephrol 12: 5059, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99

    Fakhouri F, Fila M, Hummel A, Ribes D, Sellier-Leclerc AL, Ville S, et al.: Eculizumab discontinuation in children and adults with atypical hemolytic-uremic syndrome: A prospective multicenter study. Blood 137: 24382449, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100

    Menne J: Is ravulizumab the new treatment of choice for atypical hemolytic uremic syndrome (aHUS)? Kidney Int 97: 11061108, 2020 PubMed

  • 101

    Ariceta G, Dixon BP, Kim SH, Kapur G, Mauch T, Ortiz S, et al.; 312 Study Group: The long-acting C5 inhibitor, ravulizumab, is effective and safe in pediatric patients with atypical hemolytic uremic syndrome naïve to complement inhibitor treatment. Kidney Int 100: 225237, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 102

    Plasse RA, Nee R, Olson SW: Aliskiren as an adjunct therapy for atypical hemolytic uremic syndrome. Clin Kidney J 13: 3941, 2019 PubMed

Metrics

All Time Past Year Past 30 Days
Abstract Views 575 575 50
Full Text Views 798 798 54
PDF Downloads 1056 1056 72