Primary Nephrotic Syndrome
By:
Landan ZandDivision of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota

Search for other papers by Landan Zand in
Current site
Google Scholar
PubMed
Close
and
Fernando C. FervenzaDivision of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota

Search for other papers by Fernando C. Fervenza in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1

    Glassock RJ, Fervenza FC, Hebert L, Cameron JS: Nephrotic syndrome redux. Nephrol Dial Transplant 30: 1217, 2015 PubMed

  • 2

    van de Logt AE, Rijpma SR, Vink CH, Prudon-Rosmulder E, Wetzels JF, van Berkel M: The bias between different albumin assays may affect clinical decision-making. Kidney Int 95: 15141517, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3

    Meyrier A, Niaudet P: Acute kidney injury complicating nephrotic syndrome of minimal change disease. Kidney Int 94: 861869, 2018 PubMed

  • 4

    Glassock RJ: Secondary minimal change disease. Nephrol Dial Transplant 18[Suppl 6]: vi52vi58, 2003 PubMed

  • 5

    Shalhoub RJ: Pathogenesis of lipoid nephrosis: A disorder of T-cell function. Lancet 2: 556560, 1974 PubMed

  • 6

    Lagrue G, Xheneumont S, Branellec A, Hirbec G, Weil B: A vascular permeability factor elaborated from lymphocytes. I. Demonstration in patients with nephrotic syndrome. Biomedicine (Paris) 23: 3740, 1975 PubMed

    • Search Google Scholar
    • Export Citation
  • 7

    Heslan JM, Branellec AI, Pilatte Y, Lang P, Lagrue G: Differentiation between vascular permeability factor and IL-2 in lymphocyte supernatants from patients with minimal-change nephrotic syndrome. Clin Exp Immunol 86: 157162, 1991 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Cheung PK, Stulp B, Immenschuh S, Borghuis T, Baller JF, Bakker WW: Is 100KF an isoform of hemopexin? Immunochemical characterization of the vasoactive plasma factor 100KF. J Am Soc Nephrol 10: 17001708, 1999 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Cheung PK, Klok PA, Baller JF, Bakker WW: Induction of experimental proteinuria in vivo following infusion of human plasma hemopexin. Kidney Int 57: 15121520, 2000 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Clement LC, Avila-Casado C, Macé C, Soria E, Bakker WW, Kersten S, et al.: Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 17: 117122, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Lai KW, Wei CL, Tan LK, Tan PH, Chiang GS, Lee CG, et al.: Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol 18: 14761485, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Chugh SS, Clement LC, Macé C: New insights into human minimal change disease: Lessons from animal models. Am J Kidney Dis 59: 284292, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Garin EH, Blanchard DK, Matsushima K, Djeu JY: IL-8 production by peripheral blood mononuclear cells in nephrotic patients. Kidney Int 45: 13111317, 1994 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Kondo S, Yoshizawa N, Kusumi Y, Takeuchi A, Torikata C: Studies of glomerular permeability factor (GPF) in focal segmental glomerular sclerosis and the relationship between GPF and vascular permeability factor (VPF). Clin Nephrol 52: 278284, 1999 PubMed

    • Search Google Scholar
    • Export Citation
  • 15

    Clement LC, Macé C, Avila-Casado C, Joles JA, Kersten S, Chugh SS: Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat Med 20: 3746, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Kim AH, Chung JJ, Akilesh S, Koziell A, Jain S, Hodgin JB, et al.: B cell-derived IL-4 acts on podocytes to induce proteinuria and foot process effacement. JCI Insight 2: e81836, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Boumediene A, Vachin P, Sendeyo K, Oniszczuk J, Zhang SY, Henique C, et al.: NEPHRUTIX: A randomized, double-blind, placebo vs rituximab-controlled trial assessing T-cell subset changes in minimal change nephrotic syndrome. J Autoimmun 88: 91102, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18

    Watts AJB, Keller KH, Lerner G, Rosales I, Collins AB, Sekulic M, et al.: Discovery of autoantibodies targeting nephrin in minimal change disease supports a novel autoimmune etiology. J Am Soc Nephrol 33: 238252, 2022 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Yoshikawa N, Nakanishi K, Sako M, Oba MS, Mori R, Ota E, et al.; Japanese Study Group of Kidney Disease in Children: A multicenter randomized trial indicates initial prednisolone treatment for childhood nephrotic syndrome for two months is not inferior to six-month treatment. Kidney Int 87: 225232, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Sinha A, Saha A, Kumar M, Sharma S, Afzal K, Mehta A, et al.: Extending initial prednisolone treatment in a randomized control trial from 3 to 6 months did not significantly influence the course of illness in children with steroid-sensitive nephrotic syndrome. Kidney Int 87: 217224, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Webb NJA, Woolley RL, Lambe T, Frew E, Brettell EA, Barsoum EN, et al.; PREDNOS Collaborative Group: Long term tapering versus standard prednisolone treatment for first episode of childhood nephrotic syndrome: Phase III randomised controlled trial and economic evaluation. BMJ 365: l1800, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    Hahn D, Hodson EM, Willis NS, Craig JC: Corticosteroid therapy for nephrotic syndrome in children. Cochrane Database Syst Rev (3): CD001533, 2015 PubMed

    • Search Google Scholar
    • Export Citation
  • 23

    Waldman M, Crew RJ, Valeri A, Busch J, Stokes B, Markowitz G, et al.: Adult minimal-change disease: Clinical characteristics, treatment, and outcomes. Clin J Am Soc Nephrol 2: 445453, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    Li H, Shi X, Shen H, Li X, Wang H, Li H, et al.: Tacrolimus versus intravenous pulse cyclophosphamide therapy in Chinese adults with steroid-resistant idiopathic minimal change nephropathy: A multicenter, open-label, nonrandomized cohort trial. Clin Ther 34: 11121120, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Ponticelli C, Edefonti A, Ghio L, Rizzoni G, Rinaldi S, Gusmano R, et al.: Cyclosporin versus cyclophosphamide for patients with steroid-dependent and frequently relapsing idiopathic nephrotic syndrome: A multicentre randomized controlled trial. Nephrol Dial Transplant 8: 13261332, 1993 PubMed

    • Search Google Scholar
    • Export Citation
  • 26

    Li X, Li H, Chen J, He Q, Lv R, Lin W, et al.: Tacrolimus as a steroid-sparing agent for adults with steroid-dependent minimal change nephrotic syndrome. Nephrol Dial Transplant 23: 19191925, 2008 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Meyrier A, Condamin MC, Broneer D; Collaborative Group of the French Society of Nephrology: Treatment of adult idiopathic nephrotic syndrome with cyclosporin A: Minimal-change disease and focal-segmental glomerulosclerosis. Clin Nephrol 35[Suppl 1]: S37S42, 1991 PubMed

    • Search Google Scholar
    • Export Citation
  • 28

    Li X, Liu Z, Wang L, Wang R, Ding G, Shi W, et al.: Tacrolimus monotherapy after intravenous methylprednisolone in adults with minimal change nephrotic syndrome. J Am Soc Nephrol 28: 12861295, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Medjeral-Thomas NR, Lawrence C, Condon M, Sood B, Warwicker P, Brown H, et al.: Randomized, controlled trial of tacrolimus and prednisolone monotherapy for adults with de novo minimal change disease: A multicenter, randomized, controlled trial. Clin J Am Soc Nephrol 15: 209218, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Gellermann J, Weber L, Pape L, Tönshoff B, Hoyer P, Querfeld U; Gesellschaft für Pädiatrische Nephrologie (GPN): Mycophenolate mofetil versus cyclosporin A in children with frequently relapsing nephrotic syndrome. J Am Soc Nephrol 24: 16891697, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Geng HY, Ji LN, Chen CY, Tu J, Li HR, Bao R, et al.: [Mycophenolate mofetil versus cyclosporine A in children with primary refractory nephrotic syndrome]. Zhonghua Er Ke Za Zhi 56: 651656, 2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 32

    Sinha A, Puraswani M, Kalaivani M, Goyal P, Hari P, Bagga A: Efficacy and safety of mycophenolate mofetil versus levamisole in frequently relapsing nephrotic syndrome: An open-label randomized controlled trial. Kidney Int 95: 210218, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Rémy P, Audard V, Natella PA, Pelle G, Dussol B, Leray-Moragues H, et al.; MSN Trial Investigators: An open-label randomized controlled trial of low-dose corticosteroid plus enteric-coated mycophenolate sodium versus standard corticosteroid treatment for minimal change nephrotic syndrome in adults (MSN study). Kidney Int 94: 12171226, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Benz K, Dötsch J, Rascher W, Stachel D: Change of the course of steroid-dependent nephrotic syndrome after rituximab therapy. Pediatr Nephrol 19: 794797, 2004 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35

    Ravani P, Rossi R, Bonanni A, Quinn RR, Sica F, Bodria M, et al.: Rituximab in children with steroid-dependent nephrotic syndrome: A multicenter, open-label, noninferiority, randomized controlled trial. J Am Soc Nephrol 26: 22592266, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    Iijima K, Sako M, Nozu K, Mori R, Tuchida N, Kamei K, et al.; Rituximab for Childhood-onset Refractory Nephrotic Syndrome (RCRNS) Study Group: Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: A multicentre, double-blind, randomised, placebo-controlled trial. Lancet 384: 12731281, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37

    Ruggenenti P, Ruggiero B, Cravedi P, Vivarelli M, Massella L, Marasà M, et al.; Rituximab in Nephrotic Syndrome of Steroid-Dependent or Frequently Relapsing Minimal Change Disease Or Focal Segmental Glomerulosclerosis (NEMO) Study Group: Rituximab in steroid-dependent or frequently relapsing idiopathic nephrotic syndrome. J Am Soc Nephrol 25: 850863, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Webb H, Jaureguiberry G, Dufek S, Tullus K, Bockenhauer D: Cyclophosphamide and rituximab in frequently relapsing/steroid-dependent nephrotic syndrome. Pediatr Nephrol 31: 589594, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    Basu B, Sander A, Roy B, Preussler S, Barua S, Mahapatra TKS, et al.: Efficacy of rituximab vs tacrolimus in pediatric corticosteroid-dependent nephrotic syndrome: A randomized clinical trial. JAMA Pediatr 172: 757764, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40

    Hogan J, Dossier C, Kwon T, Macher MA, Maisin A, Couderc A, et al.: Effect of different rituximab regimens on B cell depletion and time to relapse in children with steroid-dependent nephrotic syndrome. Pediatr Nephrol 34: 253259, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    Chan EY, Webb H, Yu E, Ghiggeri GM, Kemper MJ, Ma AL, et al.: Both the rituximab dose and maintenance immunosuppression in steroid-dependent/frequently-relapsing nephrotic syndrome have important effects on outcomes. Kidney Int 97: 393401, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42

    Ravani P, Magnasco A, Edefonti A, Murer L, Rossi R, Ghio L, et al.: Short-term effects of rituximab in children with steroid- and calcineurin-dependent nephrotic syndrome: A randomized controlled trial. Clin J Am Soc Nephrol 6: 13081315, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    Ravani P, Ponticelli A, Siciliano C, Fornoni A, Magnasco A, Sica F, et al.: Rituximab is a safe and effective long-term treatment for children with steroid and calcineurin inhibitor-dependent idiopathic nephrotic syndrome. Kidney Int 84: 10251033, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    Magnasco A, Ravani P, Edefonti A, Murer L, Ghio L, Belingheri M, et al.: Rituximab in children with resistant idiopathic nephrotic syndrome. J Am Soc Nephrol 23: 11171124, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45

    Ravani P, Bonanni A, Ghiggeri GM: Randomised controlled trial comparing ofatumumab to rituximab in children with steroid-dependent and calcineurin inhibitor-dependent idiopathic nephrotic syndrome: Study protocol. BMJ Open 7: e013319, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46

    Iwabuchi Y, Miyabe Y, Makabe S, Nakano M, Manabe S, Karasawa K, et al.: Comparison of the response of frequently relapsing steroid-dependent minimal change nephrotic syndrome to rituximab therapy between childhood-onset and adult-onset disease. Medicine (Baltimore) 97: e12704, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47

    Fenoglio R, Sciascia S, Beltrame G, Mesiano P, Ferro M, Quattrocchio G, et al.: Rituximab as a front-line therapy for adult-onset minimal change disease with nephrotic syndrome. Oncotarget 9: 2879928804, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48

    Kronbichler A, Kerschbaum J, Fernandez-Fresnedo G, Hoxha E, Kurschat CE, Busch M, et al.: Rituximab treatment for relapsing minimal change disease and focal segmental glomerulosclerosis: A systematic review. Am J Nephrol 39: 322330, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49

    Kittanamongkolchai W, Cheungpasitporn W, Zand L: Efficacy and safety of adrenocorticotropic hormone treatment in glomerular diseases: A systematic review and meta-analysis. Clin Kidney J 9: 387396, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50

    Madan A, Mijovic-Das S, Stankovic A, Teehan G, Milward AS, Khastgir A: Acthar gel in the treatment of nephrotic syndrome: A multicenter retrospective case series. BMC Nephrol 17: 37, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51

    Wang CS, Travers C, McCracken C, Leong T, Gbadegesin R, Quiroga A, et al.: Adrenocorticotropic hormone for childhood nephrotic syndrome: The ATLANTIS randomized trial. Clin J Am Soc Nephrol 13: 18591865, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52

    Szeto CC, Lai FM, Chow KM, Kwan BC, Kwong VW, Leung CB, et al.: Long-term outcome of biopsy-proven minimal change nephropathy in Chinese adults. Am J Kidney Dis 65: 710718, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53

    Sethi S, Glassock RJ, Fervenza FC: Focal segmental glomerulosclerosis: Towards a better understanding for the practicing nephrologist. Nephrol Dial Transplant 30: 375384, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54

    Izzedine H, Launay-Vacher V, Bourry E, Brocheriou I, Karie S, Deray G: Drug-induced glomerulopathies. Expert Opin Drug Saf 5: 95106, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55

    Chandra P, Kopp JB: Viruses and collapsing glomerulopathy: A brief critical review. Clin Kidney J 6: 15, 2013 PubMed

  • 56

    Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD: Obesity-related glomerulopathy: An emerging epidemic. Kidney Int 59: 14981509, 2001 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57

    Kriz W, Lemley KV: A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol 26: 258269, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58

    Kriz W, Lemley KV: Potential relevance of shear stress for slit diaphragm and podocyte function. Kidney Int 91: 12831286, 2017 PubMed

  • 59

    De Vriese AS, Wetzels JF, Glassock RJ, Sethi S, Fervenza FC: Therapeutic trials in adult FSGS: Lessons learned and the road forward. Nat Rev Nephrol 17: 619630, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60

    Rovin BH, Adler SG, Barratt J, Bridoux F, Burdge KA, Chan TM, et al.: Executive summary of the KDIGO 2021 guideline for the management of glomerular diseases. Kidney Int 100: 753779, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61

    Campbell KN, Tumlin JA: Protecting podocytes: A key target for therapy of focal segmental glomerulosclerosis. Am J Nephrol 47[Suppl 1]: 1429, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62

    Campbell KN, Wong JS, Gupta R, Asanuma K, Sudol M, He JC, et al.: Yes-associated protein (YAP) promotes cell survival by inhibiting proapoptotic dendrin signaling. J Biol Chem 288: 1705717062, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63

    Schwartzman M, Reginensi A, Wong JS, Basgen JM, Meliambro K, Nicholas SB, et al.: Podocyte-specific deletion of Yes-associated protein causes FSGS and progressive renal failure. J Am Soc Nephrol 27: 216226, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64

    Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE, et al.: Podocyte depletion causes glomerulosclerosis: Diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol 16: 29412952, 2005 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65

    Eng DG, Sunseri MW, Kaverina NV, Roeder SS, Pippin JW, Shankland SJ: Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis. Kidney Int 88: 9991012, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66

    Kretzler M: Role of podocytes in focal sclerosis: Defining the point of no return. J Am Soc Nephrol 16: 28302832, 2005 PubMed

  • 67

    Savin VJ, Sharma M, Zhou J, Gennochi D, Fields T, Sharma R, et al.: Renal and hematological effects of CLCF-1, a B-cell-stimulating cytokine of the IL-6 family. J Immunol Res 2015: 714964, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68

    Wei C, El Hindi S, Li J, Fornoni A, Goes N, Sageshima J, et al.: Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med 17: 952960, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69

    Delville M, Sigdel TK, Wei C, Li J, Hsieh SC, Fornoni A, et al.: A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci Transl Med 6: 256ra136, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70

    Wada T, Nangaku M: A circulating permeability factor in focal segmental glomerulosclerosis: The hunt continues. Clin Kidney J 8: 708715, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71

    Lepori N, Zand L, Sethi S, Fernandez-Juarez G, Fervenza FC: Clinical and pathological phenotype of genetic causes of focal segmental glomerulosclerosis in adults. Clin Kidney J 11: 179190, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72

    De Vriese AS, Sethi S, Nath KA, Glassock RJ, Fervenza FC: Differentiating primary, genetic, and secondary FSGS in adults: A clinicopathologic approach. J Am Soc Nephrol 29: 759774, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73

    Buxeda A, Said S, Nasr SH, Soler MJ, Howard MT, Maguire LJ, et al.: Crystal-induced podocytopathy producing collapsing focal segmental glomerulosclerosis in monoclonal gammopathy of renal significance: A case report. Kidney Med 3: 659664, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74

    Sethi S, Zand L, Nasr SH, Glassock RJ, Fervenza FC: Focal and segmental glomerulosclerosis: Clinical and kidney biopsy correlations. Clin Kidney J 7: 531537, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75

    Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al.; CREDENCE Trial Investigators: Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380: 22952306, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76

    van den Berg JG, van den Bergh Weerman MA, Assmann KJ, Weening JJ, Florquin S: Podocyte foot process effacement is not correlated with the level of proteinuria in human glomerulopathies. Kidney Int 66: 19011906, 2004 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77

    Deegens JK, Dijkman HB, Borm GF, Steenbergen EJ, van den Berg JG, Weening JJ, et al.: Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. Kidney Int 74: 15681576, 2008 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78

    Maas RJ, Deegens JK, Smeets B, Moeller MJ, Wetzels JF: Minimal change disease and idiopathic FSGS: Manifestations of the same disease. Nat Rev Nephrol 12: 768776, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79

    Hommos MS, De Vriese AS, Alexander MP, Sethi S, Vaughan L, Zand L, et al.: The incidence of primary vs secondary focal segmental glomerulosclerosis: A clinicopathologic study. Mayo Clin Proc 92: 17721781, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80

    Zand L, Glassock RJ, De Vriese AS, Sethi S, Fervenza FC: What are we missing in the clinical trials of focal segmental glomerulosclerosis? Nephrol Dial Transplant 32[Suppl 1]: i14i21, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81

    Hogan J, Mohan P, Appel GB: Diagnostic tests and treatment options in glomerular disease: 2014 update. Am J Kidney Dis 63: 656666, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82

    Rood IM, Bavinck A, Lipska-Ziętkiewicz BS, Lugtenberg D, Schaefer F, Deegens JKJ, et al.: Later response to corticosteroids in adults with primary focal segmental glomerular sclerosis is associated with favorable outcomes. Kidney Int Rep 7: 8798, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83

    Cattran DC, Appel GB, Hebert LA, Hunsicker LG, Pohl MA, Hoy WE, et al.; North America Nephrotic Syndrome Study Group: A randomized trial of cyclosporine in patients with steroid-resistant focal segmental glomerulosclerosis. Kidney Int 56: 22202226, 1999 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84

    Ramachandran R, Kumar V, Rathi M, Nada R, Jha V, Gupta KL, et al.: Tacrolimus therapy in adult-onset steroid-resistant nephrotic syndrome due to a focal segmental glomerulosclerosis single-center experience. Nephrol Dial Transplant 29: 19181924, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85

    Laurin LP, Gasim AM, Poulton CJ, Hogan SL, Jennette JC, Falk RJ, et al.: Treatment with glucocorticoids or calcineurin inhibitors in primary FSGS. Clin J Am Soc Nephrol 11: 386394, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86

    Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, et al.: The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14: 931938, 2008 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87

    Meyrier A, Noël LH, Auriche P, Callard P; Collaborative Group of the Société de Néphrologie: Long-term renal tolerance of cyclosporin A treatment in adult idiopathic nephrotic syndrome. Kidney Int 45: 14461456, 1994 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88

    DaSilva I, Huerta A, Quintana L, Redondo B, Iglesias E, Draibe J, et al.; Spanish Group for the Study of Glomerular Diseases (GLOSEN): Rituximab for steroid-dependent or frequently relapsing idiopathic nephrotic syndrome in adults: A retrospective, multicenter study in Spain. BioDrugs 31: 239249, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89

    Tedesco M, Mescia F, Pisani I, Allinovi M, Casazza G, Del Vecchio L, et al.; Italian Society of Nephrology Immunopathology Working Group: The role of rituximab in primary focal segmental glomerular sclerosis of the adult. Kidney Int Rep 7: 18781886, 2022 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90

    Kronbichler A, Gauckler P, Bruchfeld A: Rituximab in minimal change disease and focal segmental glomerulosclerosis. Nephrol Dial Transplant 36: 983985, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91

    Roccatello D, Sciascia S, Rossi D, Alpa M, Naretto C, Radin M, et al.: High-dose rituximab ineffective for focal segmental glomerulosclerosis: A long-term observation study. Am J Nephrol 46: 108113, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92

    Furie RA, Aroca G, Cascino MD, Garg JP, Rovin BH, Alvarez A, et al.: B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: A randomised, double-blind, placebo-controlled trial. Ann Rheum Dis 81: 100107, 2022 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93

    Klomjit N, Fervenza FC, Zand L: Successful treatment of patients with refractory PLA2R-associated membranous nephropathy with obinutuzumab: A report of 3 cases. Am J Kidney Dis 76: 883888, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94

    Gipson DS, Trachtman H, Kaskel FJ, Greene TH, Radeva MK, Gassman JJ, et al.: Clinical trial of focal segmental glomerulosclerosis in children and young adults. Kidney Int 80: 868878, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95

    Hogan J, Bomback AS, Mehta K, Canetta PA, Rao MK, Appel GB, et al.: Treatment of idiopathic FSGS with adrenocorticotropic hormone gel. Clin J Am Soc Nephrol 8: 20722081, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96

    Bomback AS, Canetta PA, Beck LH Jr, Ayalon R, Radhakrishnan J, Appel GB: Treatment of resistant glomerular diseases with adrenocorticotropic hormone gel: A prospective trial. Am J Nephrol 36: 5867, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97

    Trachtman H, Nelson P, Adler S, Campbell KN, Chaudhuri A, Derebail VK, et al.; DUET Study Group: DUET: A phase 2 study evaluating the efficacy and safety of sparsentan in patients with FSGS. J Am Soc Nephrol 29: 27452754, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98

    Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al.; DAPA-CKD Trial Committees and Investigators: Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383: 14361446, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99

    Wheeler DC, Jongs N, Stefansson BV, Chertow GM, Greene T, Hou FF, et al.; DAPA-CKD Trial Committees and Investigators: Safety and efficacy of dapagliflozin in patients with focal segmental glomerulosclerosis: A prespecified analysis of the dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial. Nephrol Dial Transplant 37: 16471656, 2022 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100

    Santín S, Bullich G, Tazón-Vega B, García-Maset R, Giménez I, Silva I, et al.: Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 6: 11391148, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101

    Gribouval O, Boyer O, Hummel A, Dantal J, Martinez F, Sberro-Soussan R, et al.: Identification of genetic causes for sporadic steroid-resistant nephrotic syndrome in adults. Kidney Int 94: 10131022, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 102

    Landini S, Mazzinghi B, Becherucci F, Allinovi M, Provenzano A, Palazzo V, et al.: Reverse phenotyping after whole-exome sequencing in steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 15: 89100, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 103

    Warejko JK, Tan W, Daga A, Schapiro D, Lawson JA, Shril S, et al.: Whole exome sequencing of patients with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 13: 5362, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 104

    Miao J, Pinto E Vairo F, Hogan MC, Erickson SB, El Ters M, Bentall AJ, et al.: Identification of genetic causes of focal segmental glomerulosclerosis increases with proper patient selection. Mayo Clin Proc 96: 23422353, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105

    Groopman EE, Marasa M, Cameron-Christie S, Petrovski S, Aggarwal VS, Milo-Rasouly H, et al.: Diagnostic utility of exome sequencing for kidney disease. N Engl J Med 380: 142151, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 106

    Malone AF, Phelan PJ, Hall G, Cetincelik U, Homstad A, Alonso AS, et al.: Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int 86: 12531259, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 107

    Gast C, Pengelly RJ, Lyon M, Bunyan DJ, Seaby EG, Graham N, et al.: Collagen (COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis. Nephrol Dial Transplant 31: 961970, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 108

    Sen ES, Dean P, Yarram-Smith L, Bierzynska A, Woodward G, Buxton C, et al.: Clinical genetic testing using a custom-designed steroid-resistant nephrotic syndrome gene panel: Analysis and recommendations. J Med Genet 54: 795804, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 109

    Yao T, Udwan K, John R, Rana A, Haghighi A, Xu L, et al.: Integration of genetic testing and pathology for the diagnosis of adults with FSGS. Clin J Am Soc Nephrol 14: 213223, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 110

    Büscher AK, Beck BB, Melk A, Hoefele J, Kranz B, Bamborschke D, et al.; German Pediatric Nephrology Association (GPN): Rapid response to cyclosporin A and favorable renal outcome in nongenetic versus genetic steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 11: 245253, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 111

    Hoxha E, Reinhard L, Stahl RAK: Membranous nephropathy: New pathogenic mechanisms and their clinical implications. Nat Rev Nephrol 18: 466478, 2022 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 112

    Bobart SA, Tehranian S, Sethi S, Alexander MP, Nasr SH, Moura Marta C, et al.: A target antigen-based approach to the classification of membranous nephropathy. Mayo Clin Proc 96: 577591, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 113

    Beck LH Jr, Bonegio RG, Lambeau G, Beck DM, Powell DW, Cummins TD, et al.: M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 361: 1121, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 114

    Tomas NM, Beck LH Jr, Meyer-Schwesinger C, Seitz-Polski B, Ma H, Zahner G, et al.: Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med 371: 22772287, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 115

    Sethi S, Debiec H, Madden B, Charlesworth MC, Morelle J, Gross L, et al.: Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney Int 97: 163174, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 116

    Sethi S, Debiec H, Madden B, Vivarelli M, Charlesworth MC, Ravindran A, et al.: Semaphorin 3B-associated membranous nephropathy is a distinct type of disease predominantly present in pediatric patients. Kidney Int 98: 12531264, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 117

    Sethi S, Madden B, Debiec H, Morelle J, Charlesworth MC, Gross L, et al.: Protocadherin 7-associated membranous nephropathy. J Am Soc Nephrol 32: 12491261, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 118

    Al-Rabadi LF, Caza T, Trivin-Avillach C, Rodan AR, Andeen N, Hayashi N, et al.: Serine protease HTRA1 as a novel target antigen in primary membranous nephropathy. J Am Soc Nephrol 32: 16661681, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 119

    Sethi S, Madden BJ, Debiec H, Charlesworth MC, Gross L, Ravindran A, et al.: Exostosin 1/exostosin 2-associated membranous nephropathy. J Am Soc Nephrol 30: 11231136, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 120

    Sethi S, Madden B, Casal Moura M, Nasr SH, Klomjit N, Gross L, et al.: Hematopoietic stem cell transplant-membranous nephropathy is associated with protocadherin FAT1. J Am Soc Nephrol 33: 10331044, 2022 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 121

    Caza TN, Hassen SI, Kuperman M, Sharma SG, Dvanajscak Z, Arthur J, et al.: Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis. Kidney Int 100: 171181, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 122

    Hoxha E, Kneißler U, Stege G, Zahner G, Thiele I, Panzer U, et al.: Enhanced expression of the M-type phospholipase A2 receptor in glomeruli correlates with serum receptor antibodies in primary membranous nephropathy. Kidney Int 82: 797804, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 123

    Bobart SA, De Vriese AS, Pawar AS, Zand L, Sethi S, Giesen C, et al.: Noninvasive diagnosis of primary membranous nephropathy using phospholipase A2 receptor antibodies. Kidney Int 95: 429438, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 124

    Bobart SA, Han H, Tehranian S, De Vriese AS, Roman JCL, Sethi S, et al.: Noninvasive diagnosis of PLA2R-associated membranous nephropathy: A validation study. Clin J Am Soc Nephrol 16: 18331839, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 125

    Qin W, Beck LH Jr, Zeng C, Chen Z, Li S, Zuo K, et al.: Anti-phospholipase A2 receptor antibody in membranous nephropathy. J Am Soc Nephrol 22: 11371143, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 126

    Larsen CP, Messias NC, Silva FG, Messias E, Walker PD: Determination of primary versus secondary membranous glomerulopathy utilizing phospholipase A2 receptor staining in renal biopsies. Mod Pathol 26: 709715, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 127

    Stehlé T, Audard V, Ronco P, Debiec H: Phospholipase A2 receptor and sarcoidosis-associated membranous nephropathy. Nephrol Dial Transplant 30: 10471050, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 128

    Xie Q, Li Y, Xue J, Xiong Z, Wang L, Sun Z, et al.: Renal phospholipase A2 receptor in hepatitis B virus-associated membranous nephropathy. Am J Nephrol 41: 345353, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 129

    Behnert A, Schiffer M, Müller-Deile J, Beck LH Jr, Mahler M, Fritzler MJ: Antiphospholipase A2 receptor autoantibodies: A comparison of three different immunoassays for the diagnosis of idiopathic membranous nephropathy. J Immunol Res 2014: 143274, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 130

    Timmermans SA, Abdul Hamid MA, Cohen Tervaert JW, Damoiseaux JG, van Paassen P; Limburg Renal Registry: Anti-PLA2R antibodies as a prognostic factor in PLA2R-related membranous nephropathy. Am J Nephrol 42: 7077, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 131

    Hoxha E, Harendza S, Pinnschmidt H, Panzer U, Stahl RA: PLA2R antibody levels and clinical outcome in patients with membranous nephropathy and non-nephrotic range proteinuria under treatment with inhibitors of the renin-angiotensin system. PLoS One 9: e110681, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 132

    Kanigicherla D, Gummadova J, McKenzie EA, Roberts SA, Harris S, Nikam M, et al.: Anti-PLA2R antibodies measured by ELISA predict long-term outcome in a prevalent population of patients with idiopathic membranous nephropathy. Kidney Int 83: 940948, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 133

    Hoxha E, Harendza S, Pinnschmidt H, Panzer U, Stahl RA: M-type phospholipase A2 receptor autoantibodies and renal function in patients with primary membranous nephropathy. Clin J Am Soc Nephrol 9: 18831890, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 134

    Burbelo PD, Joshi M, Chaturvedi A, Little DJ, Thurlow JS, Waldman M, et al.: Detection of PLA2R autoantibodies before the diagnosis of membranous nephropathy. J Am Soc Nephrol 31: 208217, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 135

    Hoxha E, Thiele I, Zahner G, Panzer U, Harendza S, Stahl RA: Phospholipase A2 receptor autoantibodies and clinical outcome in patients with primary membranous nephropathy. J Am Soc Nephrol 25: 13571366, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 136

    Radice A, Trezzi B, Maggiore U, Pregnolato F, Stellato T, Napodano P, et al.: Clinical usefulness of autoantibodies to M-type phospholipase A2 receptor (PLA2R) for monitoring disease activity in idiopathic membranous nephropathy (IMN). Autoimmun Rev 15: 146154, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 137

    Seitz-Polski B, Dolla G, Payré C, Girard CA, Polidori J, Zorzi K, et al.: Epitope spreading of autoantibody response to PLA2R associates with poor prognosis in membranous nephropathy. J Am Soc Nephrol 27: 15171533, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 138

    Seitz-Polski B, Debiec H, Rousseau A, Dahan K, Zaghrini C, Payré C, et al.: Phospholipase A2 receptor 1 epitope spreading at baseline predicts reduced likelihood of remission of membranous nephropathy. J Am Soc Nephrol 29: 401408, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 139

    Reinhard L, Zahner G, Menzel S, Koch-Nolte F, Stahl RAK, Hoxha E: Clinical relevance of domain-specific phospholipase A2 receptor 1 antibody levels in patients with membranous nephropathy. J Am Soc Nephrol 31: 197207, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 140

    Beck LH Jr, Fervenza FC, Beck DM, Bonegio RG, Malik FA, Erickson SB, et al.: Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J Am Soc Nephrol 22: 15431550, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 141

    Medrano AS, Escalante EJ, Cáceres CC, Pamplona IA, Allende MT, Terrades NR, et al.: Prognostic value of the dynamics of M-type phospholipase A2 receptor antibody titers in patients with idiopathic membranous nephropathy treated with two different immunosuppression regimens. Biomarkers 20: 7783, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 142

    Ruggenenti P, Debiec H, Ruggiero B, Chianca A, Pellé T, Gaspari F, et al.: Anti-phospholipase A2 receptor antibody titer predicts post-rituximab outcome of membranous nephropathy. J Am Soc Nephrol 26: 25452558, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 143

    De Vriese AS, Glassock RJ, Nath KA, Sethi S, Fervenza FC: A proposal for a serology-based approach to membranous nephropathy. J Am Soc Nephrol 28: 421430, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 144

    Ren S, Wu C, Zhang Y, Wang AY, Li G, Wang L, et al.: An update on clinical significance of use of THSD7A in diagnosing idiopathic membranous nephropathy: A systematic review and meta-analysis of THSD7A in IMN. Ren Fail 40: 306313, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 145

    Hoxha E, Beck LH Jr, Wiech T, Tomas NM, Probst C, Mindorf S, et al.: An indirect immunofluorescence method facilitates detection of thrombospondin type 1 domain-containing 7A-specific antibodies in membranous nephropathy. J Am Soc Nephrol 28: 520531, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 146

    Fila M, Debiec H, Perrochia H, Djouadi N, Verpont MC, Buob D, et al.: Recurrence of anti-semaphorin 3B-mediated membranous nephropathy after kidney transplantation. J Am Soc Nephrol 33: 503509, 2022 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 147

    Ravindran A, Casal Moura M, Fervenza FC, Nasr SH, Alexander MP, Fidler ME, et al.: In patients with membranous lupus nephritis, exostosin-positivity and exostosin-negativity represent two different phenotypes. J Am Soc Nephrol 32: 695706, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 148

    Wang C, Liu Y, Zhang M, Yang F, Xu F, Shi S, et al.: Glomerular exostosin as a subtype and activity marker of class 5 lupus nephritis. Clin J Am Soc Nephrol 17: 986993, 2022 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 149

    Ruggenenti P, Cravedi P, Chianca A, Perna A, Ruggiero B, Gaspari F, et al.: Rituximab in idiopathic membranous nephropathy. J Am Soc Nephrol 23: 14161425, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 150

    Jha V, Ganguli A, Saha TK, Kohli HS, Sud K, Gupta KL, et al.: A randomized, controlled trial of steroids and cyclophosphamide in adults with nephrotic syndrome caused by idiopathic membranous nephropathy. J Am Soc Nephrol 18: 18991904, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 151

    Ponticelli C, Zucchelli P, Passerini P, Cesana B, Locatelli F, Pasquali S, et al.: A 10-year follow-up of a randomized study with methylprednisolone and chlorambucil in membranous nephropathy. Kidney Int 48: 16001604, 1995 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 152

    Cattran DC, Greenwood C, Ritchie S, Bernstein K, Churchill DN, Clark WF, et al.; Canadian Glomerulonephritis Study Group: A controlled trial of cyclosporine in patients with progressive membranous nephropathy. Kidney Int 47: 11301135, 1995 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 153

    Cattran DC, Appel GB, Hebert LA, Hunsicker LG, Pohl MA, Hoy WE, et al.; North America Nephrotic Syndrome Study Group: Cyclosporine in patients with steroid-resistant membranous nephropathy: A randomized trial. Kidney Int 59: 14841490, 2001 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 154

    Alexopoulos E, Papagianni A, Tsamelashvili M, Leontsini M, Memmos D: Induction and long-term treatment with cyclosporine in membranous nephropathy with the nephrotic syndrome. Nephrol Dial Transplant 21: 31273132, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 155

    Praga M, Barrio V, Juárez GF, Luño J; Grupo Español de Estudio de la Nefropatía Membranosa: Tacrolimus monotherapy in membranous nephropathy: A randomized controlled trial. Kidney Int 71: 924930, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 156

    Ramachandran R, Hn HK, Kumar V, Nada R, Yadav AK, Goyal A, et al.: Tacrolimus combined with corticosteroids versus modified Ponticelli regimen in treatment of idiopathic membranous nephropathy: Randomized control trial. Nephrology (Carlton) 21: 139146, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 157

    Caro J, Gutiérrez-Solís E, Rojas-Rivera J, Agraz I, Ramos N, Rabasco C, et al.; Grupo de Estudio de las Enfermedades Glomerulares de la Sociedad Española de Nefrología (GLOSEN): Predictors of response and relapse in patients with idiopathic membranous nephropathy treated with tacrolimus. Nephrol Dial Transplant 30: 467474, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 158

    Remuzzi G, Chiurchiu C, Abbate M, Brusegan V, Bontempelli M, Ruggenenti P: Rituximab for idiopathic membranous nephropathy. Lancet 360: 923924, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 159

    Fervenza FC, Abraham RS, Erickson SB, Irazabal MV, Eirin A, Specks U, et al.; Mayo Nephrology Collaborative Group: Rituximab therapy in idiopathic membranous nephropathy: A 2-year study. Clin J Am Soc Nephrol 5: 21882198, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 160

    Dahan K, Debiec H, Plaisier E, Cachanado M, Rousseau A, Wakselman L, et al.; GEMRITUX Study Group: Rituximab for severe membranous nephropathy: A 6-month trial with extended follow-up. J Am Soc Nephrol 28: 348358, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 161

    Fervenza FC, Appel GB, Barbour SJ, Rovin BH, Lafayette RA, Aslam N, et al.; MENTOR Investigators: Rituximab or cyclosporine in the treatment of membranous nephropathy. N Engl J Med 381: 3646, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 162

    Fernández-Juárez G, Rojas-Rivera J, Logt AV, Justino J, Sevillano A, Caravaca-Fontán F, et al.; STARMEN Investigators: The STARMEN trial indicates that alternating treatment with corticosteroids and cyclophosphamide is superior to sequential treatment with tacrolimus and rituximab in primary membranous nephropathy. Kidney Int 99: 986998, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 163

    Scolari F, Delbarba E, Santoro D, Gesualdo L, Pani A, Dallera N, et al.; RI-CYCLO Investigators: Rituximab or cyclophosphamide in the treatment of membranous nephropathy: The RI-CYCLO randomized trial. J Am Soc Nephrol 32: 972982, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 164

    Podestà MA, Ruggiero B, Remuzzi G, Ruggenenti P: Ofatumumab for multirelapsing membranous nephropathy complicated by rituximab-induced serum-sickness. BMJ Case Rep 13: e232896, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 165

    Sethi S, Kumar S, Lim K, Jordan SC: Obinutuzumab is effective for the treatment of refractory membranous nephropathy. Kidney Int Rep 5: 15151518, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 402 402 301
Full Text Views 607 607 493
PDF Downloads 771 771 646