Risk Factors, Mechanisms, and Causes of Essential Hypertension
By:
Eric K. JuddDivision of Nephrology, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama

Search for other papers by Eric K. Judd in
Current site
Google Scholar
PubMed
Close
and
Suzanne OparilDivision of Cardiovascular Disease, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama

Search for other papers by Suzanne Oparil in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1

    Guyton AC: Blood pressure control: Pecial role of the kidneys and body fluids. Science 252: 18131816, 1991 PubMed

  • 2

    Padmanabhan S, Dominiczak AF: Genomics of hypertension: The road to precision medicine. Nat Rev Cardiol 18: 235250, 2021 PubMed

  • 3

    Kupper N, Willemsen G, Riese H, Posthuma D, Boomsma DI, de Geus EJ: Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension 45: 8085, 2005 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al.; Million Veteran Program: Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet 50: 14121425, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Vaura F, Kauko A, Suvila K, Havulinna AS, Mars N, Salomaa V, et al.: Polygenic risk scores predict hypertension onset and cardiovascular risk. Hypertension 77: 11191127, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Warrington NM, Beaumont RN, Horikoshi M, Day FR, Helgeland Ø, Laurin C, et al.; EGG Consortium: Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat Genet 51: 804814, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Keller G, Zimmer G, Mall G, Ritz E, Amann K: Nephron number in patients with primary hypertension. N Engl J Med 348: 101108, 2003 PubMed

  • 8

    Padmanabhan S, Melander O, Johnson T, Di Blasio AM, Lee WK, Gentilini D, et al.; Global BPgen Consortium: Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet 6: e1001177, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Graham LA, Padmanabhan S, Fraser NJ, Kumar S, Bates JM, Raffi HS, et al.: Validation of uromodulin as a candidate gene for human essential hypertension. Hypertension 63: 551558, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Devuyst O, Olinger E, Rampoldi L: Uromodulin: From physiology to rare and complex kidney disorders. Nat Rev Nephrol 13: 525544, 2017 PubMed

  • 11

    Torffvit O, Melander O, Hultén UL: Urinary excretion rate of Tamm-Horsfall protein is related to salt intake in humans. Nephron, Physiol 97: 3136, 2004 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Bakhoum CY, Anderson CAM, Juraschek SP, Rebholz CM, Appel LJ, Miller ER, et al.: The relationship between urine uromodulin and blood pressure changes: The DASH-sodium trial. Am J Hypertens 34: 154156, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al.; DASH-Sodium Collaborative Research Group: Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. N Engl J Med 344: 310, 2001 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Ponte B, Pruijm M, Ackermann D, Olinger E, Youhanna S, Vogt B, et al.: Uromodulin, salt, and 24-hour blood pressure in the general population. Clin J Am Soc Nephrol 16: 787789, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Stsiapanava A, Xu C, Brunati M, Zamora-Caballero S, Schaeffer C, Bokhove M, et al.: Cryo-EM structure of native human uromodulin, a zona pellucida module polymer. EMBO J 39: e106807, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Micanovic R, LaFavers K, Garimella PS, Wu XR, El-Achkar TM: Uromodulin (Tamm-Horsfall protein): Guardian of urinary and systemic homeostasis. Nephrol Dial Transplant 35: 3343, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Singh P, Harris PC, Sas DJ, Lieske JC: The genetics of kidney stone disease and nephrocalcinosis. Nat Rev Nephrol 18: 224240, 2022 PubMed

  • 18

    Gonzalez-Jaramillo V, Portilla-Fernandez E, Glisic M, Voortman T, Bramer W, Chowdhury R, et al.: The role of DNA methylation and histone modifications in blood pressure: A systematic review. J Hum Hypertens 33: 703715, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Sedaka R, Hyndman KA, Mironova E, Stockand JD, Pollock JS: High salt intake induces collecting duct HDAC1-dependent NO signaling. Am J Physiol Renal Physiol 320: F297F307, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Fang Z, Wang X, Sun X, Hu W, Miao QR: The role of histone protein acetylation in regulating endothelial function. Front Cell Dev Biol 9: 672447, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Kawarazaki W, Fujita T: Kidney and epigenetic mechanisms of salt-sensitive hypertension. Nat Rev Nephrol 17: 350363, 2021 PubMed

  • 22

    Kawakami-Mori F, Nishimoto M, Reheman L, Kawarazaki W, Ayuzawa N, Ueda K, et al.: Aberrant DNA methylation of hypothalamic angiotensin receptor in prenatal programmed hypertension. JCI Insight 3: e95625, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Dasinger JH, Alsheikh AJ, Abais-Battad JM, Pan X, Fehrenbach DJ, Lund H, et al.: Epigenetic modifications in T cells: The role of DNA methylation in salt-sensitive hypertension. Hypertension 75: 372382, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    Mao SQ, Sun JH, Gu TL, Zhu FB, Yin FY, Zhang LN: Hypomethylation of interleukin-6 (IL-6) gene increases the risk of essential hypertension: A matched case-control study. J Hum Hypertens 31: 530536, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Treesaranuwattana T, Wong KYH, Brooks DL, Tay CS, Williams GH, Williams JS, et al.: Lysine-specific demethylase-1 deficiency increases agonist signaling via the mineralocorticoid receptor. Hypertension 75: 10451053, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Elijovich F, Weinberger MH, Anderson CA, Appel LJ, Bursztyn M, Cook NR, et al.; American Heart Association Professional and Public Education Committee of the Council on Hypertension; Council on Functional Genomics and Translational Biology; and Stroke Council: Salt sensitivity of blood pressure: A scientific statement from the American Heart Association. Hypertension 68: e7e46, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Laffer CL, Scott 3rd RC, Titze JM, Luft FC, Elijovich F: Hemodynamics and salt-and-water balance link sodium storage and vascular dysfunction in salt-sensitive subjects. Hypertension 68: 195203, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Thomson SC, Vallon V: Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats. Am J Physiol Renal Physiol 320: F761F771, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Wilcox CS: Antihypertensive and renal mechanisms of SGLT2 (sodium-glucose linked transporter 2) inhibitors. Hypertension 75: 894901, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Agarwal R, Sinha AD, Cramer AE, Balmes-Fenwick M, Dickinson JH, Ouyang F, et al.: Chlorthalidone for hypertension in advanced chronic kidney disease. N Engl J Med 385: 25072519, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Bovée DM, Uijl E, Severs D, Rubio-Beltrán E, van Veghel R, Maassen van den Brink A, et al.: Dietary salt modifies the blood pressure response to renin-angiotensin inhibition in experimental chronic kidney disease. Am J Physiol Renal Physiol 320: F654F668, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Harrison DG, Coffman TM, Wilcox CS: Pathophysiology of hypertension: The mosaic theory and beyond. Circ Res 128: 847863, 2021 PubMed

  • 33

    Agarwal M, Thareja N, Benjamin M, Akhondi A, Mitchell GD: Tyrosine kinase inhibitor-induced hypertension. Curr Oncol Rep 20: 65, 2018 PubMed

  • 34

    Pandey AK, Singhi EK, Arroyo JP, Ikizler TA, Gould ER, Brown J, et al.: Mechanisms of VEGF (vascular endothelial growth factor) inhibitor-associated hypertension and vascular disease. Hypertension 71: e1e8, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35

    Mäki-Petäjä KM, McGeoch A, Yang LL, Hubsch A, McEniery CM, Meyer PAR, et al.: Mechanisms underlying vascular endothelial growth factor receptor inhibition-induced hypertension: The HYPAZ trial. Hypertension 77: 15911599, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    Quintanilha JCF, Liu Y, Etheridge AS, Yazdani A, Kindler HL, Kelly WK, et al.: Plasma levels of angiopoietin-2, VEGF-A, and VCAM-1 as markers of bevacizumab-induced hypertension: CALGB 80303 and 90401 (Alliance). Angiogenesis 25: 4755, 2022 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37

    Ruggeri Barbaro N, Van Beusecum J, Xiao L, do Carmo L, Pitzer A, Loperena R, et al.: Sodium activates human monocytes via the NADPH oxidase and isolevuglandin formation. Cardiovasc Res 117: 13581371, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Wenzel UO, Bode M, Kurts C, Ehmke H: Salt, inflammation, IL-17 and hypertension. Br J Pharmacol 176: 18531863, 2019 PubMed

  • 39

    Ferguson JF, Aden LA, Barbaro NR, Van Beusecum JP, Xiao L, Simmons AJ, et al.: High dietary salt-induced dendritic cell activation underlies microbial dysbiosis-associated hypertension. JCI Insight 5: e126241, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40

    Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al.: Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551: 585589, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    Rothman AM, MacFadyen J, Thuren T, Webb A, Harrison DG, Guzik TJ, et al.: Effects of interleukin-1β inhibition on blood pressure, incident hypertension, and residual inflammatory risk: A secondary analysis of CANTOS. Hypertension 75: 477482, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42

    Prieto MC, Gonzalez AA, Visniauskas B, Navar LG: The evolving complexity of the collecting duct renin-angiotensin system in hypertension. Nat Rev Nephrol 17: 481492, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    Kemp BA, Howell NL, Keller SR, Gildea JJ, Shao W, Navar LG, et al.: Defective renal angiotensin III and AT2 receptor signaling in prehypertensive spontaneously hypertensive rats. J Am Heart Assoc 8: e012016, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    Uijl E, Ren L, Danser AHJ: Angiotensin generation in the brain: A re-evaluation. Clin Sci (Lond) 132: 839850, 2018 PubMed

  • 45

    Rodrigues AF, Todiras M, Qadri F, Campagnole-Santos MJ, Alenina N, Bader M: Increased angiotensin II formation in the brain modulates cardiovascular homeostasis and erythropoiesis. Clin Sci (Lond) 135: 13531367, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46

    Uijl E, Ren L, Mirabito Colafella KM, van Veghel R, Garrelds IM, Domenig O, et al.: No evidence for brain renin-angiotensin system activation during DOCA-salt hypertension. Clin Sci (Lond) 135: 259274, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47

    Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial Collaborative Research Group: Diuretic versus alpha-blocker as first-step antihypertensive therapy: Final results from the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). Hypertension 42: 239246, 2003 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48

    Jamerson K, Weber MA, Bakris GL, Dahlöf B, Pitt B, Shi V, et al.; ACCOMPLISH Trial Investigators: Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med 359: 24172428, 2008 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49

    Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al.: 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension 71: e13e115, 2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 50

    Filippini T, Naska A, Kasdagli MI, Torres D, Lopes C, Carvalho C, et al.: Potassium intake and blood pressure: A dose-response meta-analysis of randomized controlled trials. J Am Heart Assoc 9: e015719, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51

    Gibbs J, Gaskin E, Ji C, Miller MA, Cappuccio FP: The effect of plant-based dietary patterns on blood pressure: A systematic review and meta-analysis of controlled intervention trials. J Hypertens 39: 2337, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52

    Snelson M, Muralitharan RR, Dinakis E, Nakai M, Jama HA, Shihata WA, et al.: Renal ACE2 (angiotensin-converting enzyme 2) expression is modulated by dietary fiber intake, gut microbiota, and their metabolites. Hypertension 77: e53e55, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53

    Hall JE, Mouton AJ, da Silva AA, Omoto ACM, Wang Z, Li X, et al.: Obesity, kidney dysfunction, and inflammation: Interactions in hypertension. Cardiovasc Res 117: 18591876, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54

    Engeli S, Böhnke J, Gorzelniak K, Janke J, Schling P, Bader M, et al.: Weight loss and the renin-angiotensin-aldosterone system. Hypertension 45: 356362, 2005 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55

    Kane AE, Sinclair DA: Epigenetic changes during aging and their reprogramming potential. Crit Rev Biochem Mol Biol 54: 6183, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56

    Wei J, Zhu J, Zhang J, Jiang S, Qu L, Wang L, et al.: Aging impairs renal autoregulation in mice. Hypertension 75: 405412, 2020 PubMed

  • 57

    Sato Y, Yanagita M: Immunology of the ageing kidney. Nat Rev Nephrol 15: 625640, 2019 PubMed

  • 58

    Kawarazaki W, Mizuno R, Nishimoto M, Ayuzawa N, Hirohama D, Ueda K, et al.: Salt causes aging-associated hypertension via vascular Wnt5a under klotho deficiency. J Clin Invest 130: 41524166, 2020 PubMed

    • Search Google Scholar
    • Export Citation
  • 59

    Kanbay M, Demiray A, Afsar B, Covic A, Tapoi L, Ureche C, et al.: Role of klotho in the development of essential hypertension. Hypertension 77: 740750, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60

    Citterio L, Delli Carpini S, Lupoli S, Brioni E, Simonini M, Fontana S, et al.: Klotho gene in human salt-sensitive hypertension. Clin J Am Soc Nephrol 15: 375383, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61

    Simmonds SS, Lay J, Stocker SD: Dietary salt intake exaggerates sympathetic reflexes and increases blood pressure variability in normotensive rats. Hypertension 64: 583589, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62

    Cao W, Wu L, Zhang X, Zhou J, Wang J, Yang Z, et al.: Sympathetic overactivity in CKD disrupts buffering of neurotransmission by endothelium-derived hyperpolarizing factor and enhances vasoconstriction. J Am Soc Nephrol 31: 23122325, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 297 297 133
Full Text Views 317 317 49
PDF Downloads 394 394 67