Epidemiology and Outcomes for the Chronic Kidney Disease
View More View Less
  • 1 Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
  • | 2 Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
  • | 3 Departments of Medicine and Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
  • 1

    Astor BC, Matsushita K, Gansevoort RT, van der Velde M, Woodward M, Levey AS, et al.; Chronic Kidney Disease Prognosis Consortium: Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int 79: 13311340, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al.; Chronic Kidney Disease Prognosis Consortium: Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int 80: 93104, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3

    Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, et al.; Chronic Kidney Disease Prognosis Consortium: Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet 375: 20732081, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    van der Velde M, Matsushita K, Coresh J, Astor BC, Woodward M, Levey A, et al.; Chronic Kidney Disease Prognosis Consortium: Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int 79: 13411352, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Nitsch D, Grams M, Sang Y, Black C, Cirillo M, Djurdjev O, et al.; Chronic Kidney Disease Prognosis Consortium: Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: A meta-analysis. BMJ 346: f324, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Wen CP, Matsushita K, Coresh J, Iseki K, Islam M, Katz R, et al.; Chronic Kidney Disease Prognosis Consortium: Relative risks of chronic kidney disease for mortality and end-stage renal disease across races are similar. Kidney Int 86: 819827, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Mahmoodi BK, Matsushita K, Woodward M, Blankestijn PJ, Cirillo M, Ohkubo T, et al.; Chronic Kidney Disease Prognosis Consortium: Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: A meta-analysis. Lancet 380: 16491661, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Fox CS, Matsushita K, Woodward M, Bilo HJ, Chalmers J, Heerspink HJ, et al.; Chronic Kidney Disease Prognosis Consortium: Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: A meta-analysis. Lancet 380: 16621673, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Hallan SI, Matsushita K, Sang Y, Mahmoodi BK, Black C, Ishani A, et al.; Chronic Kidney Disease Prognosis Consortium: Age and association of kidney measures with mortality and end-stage renal disease. JAMA 308: 23492360, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Coresh J, Heerspink HJL, Sang Y, Matsushita K, Arnlov J, Astor BC, et al.; Chronic Kidney Disease Prognosis Consortium and Chronic Kidney Disease Epidemiology Collaboration: Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies. Lancet Diabetes Endocrinol 7: 115127, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al.; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration): A new equation to estimate glomerular filtration rate. Ann Intern Med 150: 604612, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM: Measurement Error in Nonlinear Models: A Modern Perspective, 2nd Ed., New York, Chapman and Hall, 2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Heerspink HJL, Greene T, Tighiouart H, Gansevoort RT, Coresh J, Simon AL, et al.; Chronic Kidney Disease Epidemiology Collaboration: Change in albuminuria as a surrogate endpoint for progression of kidney disease: A meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol 7: 128139, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Grams ME, Sang Y, Ballew SH, Matsushita K, Astor BC, Carrero JJ, et al.: Evaluating glomerular filtration rate slope as a surrogate end point for ESKD in clinical trials: An individual participant meta-analysis of observational data. J Am Soc Nephrol 30: 17461755, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Inker LA, Heerspink HJL, Tighiouart H, Levey AS, Coresh J, Gansevoort RT, et al.: GFR slope as a surrogate end point for kidney disease progression in clinical trials: A meta-analysis of treatment effects of randomized controlled trials. J Am Soc Nephrol 30: 17351745, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D; Modification of Diet in Renal Disease Study Group: A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Ann Intern Med 130: 461470, 1999 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Stevens LA, Claybon MA, Schmid CH, Chen J, Horio M, Imai E, et al.: Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int 79: 555562, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18

    Braun L, Wentz A, Baker R, Richardson E, Tsai J: Racialized algorithms for kidney function: Erasing social experience. Soc Sci Med 268: 113548, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Delgado C, Baweja M, Burrows NR, Crews DC, Eneanya ND, Gadegbeku CA, et al.: Reassessing the inclusion of race in diagnosing kidney diseases: An interim report from the NKF-ASN Task Force. Am J Kidney Dis 78: 103115, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Diao JA, Wu GJ, Taylor HA, Tucker JK, Powe NR, Kohane IS, et al.: Clinical implications of removing race from estimates of kidney function. JAMA 325: 184186, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Duggal V, Thomas IC, Montez-Rath ME, Chertow GM, Kurella Tamura M: National estimates of CKD prevalence and potential impact of estimating glomerular filtration rate without race. J Am Soc Nephrol 32: 14541463, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    Inker LA, Couture SJ, Tighiouart H, Abraham AG, Beck GJ, Feldman HI, et al.; CKD-EPI GFR Collaborators: A new panel-estimated GFR, including β2-microglobulin and β-trace protein and not including race, developed in a diverse population. Am J Kidney Dis 77: 673683.e1, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Anderson AH, Xie D, Wang X, Baudier RL, Orlandi P, Appel LJ, et al.; CRIC Study Investigators: Novel risk factors for progression of diabetic and nondiabetic CKD: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis 77: 5673.e1, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    Hannan M, Ansari S, Meza N, Anderson AH, Srivastava A, Waikar S, et al.; CRIC Study Investigators; Chronic Renal Insufficiency Cohort (CRIC) Study Investigators: Risk factors for CKD progression: Overview of findings from the CRIC Study. Clin J Am Soc Nephrol 16: 648659, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Johnson RJ, Bakris GL, Borghi C, Chonchol MB, Feldman D, Lanaspa MA, et al.: Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: Report of a scientific workshop organized by the National Kidney Foundation. Am J Kidney Dis 71: 851865, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Bonino B, Leoncini G, Russo E, Pontremoli R, Viazzi F: Uric acid in CKD: Has the jury come to the verdict? J Nephrol 33: 715724, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Doria A, Galecki AT, Spino C, Pop-Busui R, Cherney DZ, Lingvay I, et al.; PERL Study Group: Serum urate lowering with allopurinol and kidney function in type 1 diabetes. N Engl J Med 382: 24932503, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Badve SV, Pascoe EM, Tiku A, Boudville N, Brown FG, Cass A, et al.; CKD-FIX Study Investigators: Effects of allopurinol on the progression of chronic kidney disease. N Engl J Med 382: 25042513, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Kimura K, Hosoya T, Uchida S, Inaba M, Makino H, Maruyama S, et al.; FEATHER Study Investigators: Febuxostat therapy for patients with stage 3 CKD and asymptomatic hyperuricemia: A randomized trial. Am J Kidney Dis 72: 798810, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Smyth A, Griffin M, Yusuf S, Mann JF, Reddan D, Canavan M, et al.: Diet and major renal outcomes: A prospective cohort study. The NIH-AARP Diet and Health Study. J Ren Nutr 26: 288298, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Haring B, Selvin E, Liang M, Coresh J, Grams ME, Petruski-Ivleva N, Steffen LM, Rebholz CM: Dietary protein sources and risk for incident chronic kidney disease: Results from the atherosclerosis risk in communities (ARIC) study. J Ren Nutr 27: 233242, 2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Kontessis P, Jones S, Dodds R, Trevisan R, Nosadini R, Fioretto P, Borsato M, Sacerdoti D, Viberti G: Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins. Kidney Int 38: 136144, 1990 2166857

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Salmean YA, Segal MS, Langkamp-Henken B, Canales MT, Zello GA, Dahl WJ: Foods with added fiber lower serum creatinine levels in patients with chronic kidney disease. J Ren Nutri 23: e29e32, 2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Goraya N, Simoni J, Sager LN, Madias NE, Wesson DE: Urine citrate excretion as a marker of acid retention in patients with chronic kidney disease without overt metabolic acidosis. Kidney Int 95: 11901196, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35

    Mahajan A, Simoni J, Sheather SJ, Broglio KR, Rajab MH, Wesson DE: Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int 78: 303309, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    Goraya N, Simoni J, Jo C, Wesson DE: Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int 81: 8693, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37

    Goraya N, Simoni J, Jo CH, Wesson DE: Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int 86: 10311038, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Raphael KL: Metabolic acidosis and subclinical metabolic acidosis in CKD. J Am Soc Nephrol 29: 376382, 2018 PubMed

  • 39

    Van Slyke DD, Linder GC, Hiller A, Leiter L, McIntosh JF: The excretion of ammonia and titratable acid in nephritis. J Clin Invest 2: 255288, 1926 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40

    Vallet M, Metzger M, Haymann JP, Flamant M, Gauci C, Thervet E, et al.; NephroTest Cohort Study group: Urinary ammonia and long-term outcomes in chronic kidney disease. Kidney Int 88: 137145, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    Raphael KL, Carroll DJ, Murray J, Greene T, Beddhu S: Urine ammonium predicts clinical outcomes in hypertensive kidney disease. J Am Soc Nephrol 28: 24832490, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42

    Goraya N, Simoni J, Jo CH, Wesson DE: A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin J Am Soc Nephrol 8: 371381, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, et al.: Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: A prospective cohort study. Lancet 395: 17631770, 2020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    Fried MW, Crawford JM, Mospan AR, Watkins SE, Munoz B, Zink RC, et al.: Patient characteristics and outcomes of 11 721 patients with coronavirus disease 2019 (COVID-19) hospitalized across the United States. Clin Infect Dis 72: e558e565, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45

    Flythe JE, Assimon MM, Tugman MJ, Chang EH, Gupta S, Shah J, et al.; STOP-COVID Investigators: Characteristics and outcomes of individuals with pre-existing kidney disease and COVID-19 admitted to intensive care units in the United States. Am J Kidney Dis 77: 190203.e1, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46

    Ng JH, Hirsch JS, Hazzan A, Wanchoo R, Shah HH, Malieckal DA, et al.; Northwell Nephrology COVID-19 Research Consortium: Outcomes among patients hospitalized with COVID-19 and acute kidney injury. Am J Kidney Dis 77: 204215.e1, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47

    Cheng HT, Xu X, Lim PS, Hung KY: Worldwide epidemiology of diabetes-related end-stage renal disease, 2000–2015. Diabetes Care 44: 8997, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48

    Bhatt DL, Szarek M, Pitt B, Cannon CP, Leiter LA, McGuire DK, et al.; SCORED Investigators: Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med 384: 129139, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49

    Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al.; DAPA-CKD Trial Committees and Investigators: Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383: 14361446, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50

    Mosenzon O, Wiviott SD, Cahn A, Rozenberg A, Yanuv I, Goodrich EL, et al.: Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: An analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol 7: 606617, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51

    Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al.; CANVAS Program Collaborative Group: Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377: 644657, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52

    Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al.; CREDENCE Trial Investigators: Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380: 22952306, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53

    Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al.; EMPA-REG OUTCOME Investigators: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373: 21172128, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54

    Neuen BL, Young T, Heerspink HJL, Neal B, Perkovic V, Billot L, et al.: SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol 7: 845854, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55

    Jardine M, Zhou Z, Lambers Heerspink HJ, Hockham C, Li Q, Agarwal R, et al.: Kidney, cardiovascular, and safety outcomes of canagliflozin according to baseline albuminuria: A CREDENCE secondary analysis. Clin J Am Soc Nephrol 16: 384395, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56

    Neuen BL, Ohkuma T, Neal B, Matthews DR, de Zeeuw D, Mahaffey KW, et al.: Relative and absolute risk reductions in cardiovascular and kidney outcomes with canagliflozin across KDIGO risk categories: Findings from the CANVAS program. Am J Kidney Dis 77: 2334.e1, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57

    Heerspink HJL, Karasik A, Thuresson M, Melzer-Cohen C, Chodick G, Khunti K, et al.: Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice (CVD-REAL 3): A multinational observational cohort study. Lancet Diabetes Endocrinol 8: 2735, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58

    Xie Y, Bowe B, Gibson AK, McGill JB, Maddukuri G, Yan Y, et al.: Comparative effectiveness of SGLT2 inhibitors, GLP-1 receptor agonists, DPP-4 inhibitors, and sulfonylureas on risk of kidney outcomes: Emulation of a target trial using health care databases. Diabetes Care 43: 28592869, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59

    Jhund PS, Solomon SD, Docherty KF, Heerspink HJL, Anand IS, Böhm M, et al.: Efficacy of dapagliflozin on renal function and outcomes in patients with heart failure with reduced ejection fraction: Results of DAPA-HF. Circulation 143: 298309, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60

    Anker SD, Butler J, Filippatos G, Khan MS, Marx N, Lam CSP, et al.: Effect of empagliflozin on cardiovascular and renal outcomes in patients with heart failure by baseline diabetes status: Results from the EMPEROR-Reduced Trial. Circulation 143: 337349, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61

    Zannad F, Ferreira JP, Pocock SJ, Anker SD, Butler J, Filippatos G, et al.: SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 396: 819829, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62

    Cherney DZI, Dekkers CCJ, Barbour SJ, Cattran D, Abdul Gafor AH, Greasley PJ, et al.; DIAMOND investigators: Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): A randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol 8: 582593, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63

    Wheeler DC, Toto RD, Stefánsson BV, Jongs N, Chertow GM, Greene T, et al.; DAPA-CKD Trial Committees and Investigators: A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int 100: 215224, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64

    Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al.: Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: A systematic review and meta-analysis. Ann Intern Med 159: 262274, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65

    Heerspink HJL, Cherney DZI: Clinical implications of an acute dip in eGFR after SGLT2 inhibitor initiation. Clin J Am Soc Nephrol 16: 12781280, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66

    Nadkarni GN, Ferrandino R, Chang A, Surapaneni A, Chauhan K, Poojary P, et al.: Acute kidney injury in patients on SGLT2 inhibitors: A propensity-matched analysis. Diabetes Care 40: 14791485, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67

    Scheen AJ: An update on the safety of SGLT2 inhibitors. Expert Opin Drug Saf 18: 295311, 2019 PubMed

  • 68

    Heerspink HJL, Parving HH, Andress DL, Bakris G, Correa-Rotter R, Hou FF, et al.; SONAR Committees and Investigators: Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): A double-blind, randomised, placebo-controlled trial. Lancet 393: 19371947, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69

    Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al.; FIDELIO-DKD Investigators: Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med 383: 22192229, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70

    Filippatos G, Anker SD, Agarwal R, Pitt B, Ruilope LM, Rossing P, et al.; FIDELIO-DKD Investigators: Finerenone and cardiovascular outcomes in patients with chronic kidney disease and type 2 diabetes. Circulation 143: 540552, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71

    de Boer IH, Zelnick LR, Ruzinski J, Friedenberg G, Duszlak J, Bubes VY, et al.: Effect of vitamin D and omega-3 fatty acid supplementation on kidney function in patients with type 2 diabetes: A randomized clinical trial. JAMA 322: 18991909, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72

    Ferreira JP, Zannad F, Pocock SJ, Anker SD, Butler J, Filippatos G, et al.: Interplay of mineralocorticoid receptor antagonists and empagliflozin in heart failure: EMPEROR-Reduced. J Am Coll Cardiol 77: 13971407, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73

    Rossing P, Filippatos G, Agarwal R, Anker SD, Pitt B, Ruilope LM, et al.; FIDELIO-DKD Investigators: Finerenone in predominantly advanced CKD and type 2 diabetes with or without sodium-glucose cotransporter-2 inhibitor therapy. Kidney Int Rep 7: 3645, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74

    Heerspink HJL, Kohan DE, de Zeeuw D: New insights from SONAR indicate adding sodium glucose co-transporter 2 inhibitors to an endothelin receptor antagonist mitigates fluid retention and enhances albuminuria reduction. Kidney Int 99: 346349, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75

    Frías JP, Guja C, Hardy E, Ahmed A, Dong F, Öhman P, et al.: Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): A 28 week, multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol 4: 10041016, 2016 PubMed

    • Search Google Scholar
    • Export Citation
  • 76

    Jabbour SA, Frías JP, Hardy E, Ahmed A, Wang H, Öhman P, et al.: Safety and efficacy of exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy: 52-Week results of the DURATION-8 randomized controlled trial. Diabetes Care 41: 21362146, 2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 77

    Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, et al.: 2019 Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 43: 487493, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78

    Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al.; ESC Scientific Document Group: 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 41: 255323, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79

    Riddle MC: American Diabetes Association standards of medical care in diabetes-2019. Diabetes Care 42, 2019

  • 80

    Ueki K, Sasako T, Okazaki Y, Miyake K, Nangaku M, Ohashi Y, et al.; J-DOIT3 Study Group: Multifactorial intervention has a significant effect on diabetic kidney disease in patients with type 2 diabetes. Kidney Int 99: 256266, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81

    Shin JI, Wang D, Fernandes G, Daya N, Grams ME, Golden SH, et al.: Trends in receipt of American Diabetes Association Guideline-recommended care among U.S. adults with diabetes: NHANES 2005–2018. Diabetes Care 44: 13001308, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82

    McCoy RG, Dykhoff HJ, Sangaralingham L, Ross JS, Karaca-Mandic P, Montori VM, et al.: Adoption of new glucose-lowering medications in the U.S.-The case of SGLT2 inhibitors: Nationwide cohort study. Diabetes Technol Ther 21: 702712, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83

    Eberly LA, Yang L, Eneanya ND, Essien U, Julien H, Nathan AS, et al.: Association of race/ethnicity, gender, and socioeconomic status with sodium-glucose cotransporter 2 inhibitor use among patients with diabetes in the US. JAMA Netw Open 4: e216139, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 341 341 217
Full Text Views 289 289 135
PDF Downloads 346 346 179