Epidemiology and Outcomes for the Chronic Kidney Disease
By:
Beini Lyu Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland

Search for other papers by Beini Lyu in
Current site
Google Scholar
PubMed
Close
,
Tripti Singh Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin

Search for other papers by Tripti Singh in
Current site
Google Scholar
PubMed
Close
, and
Brad C. Astor Departments of Medicine and Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin

Search for other papers by Brad C. Astor in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1

    Astor BC, Matsushita K, Gansevoort RT, van der Velde M, Woodward M, Levey AS, et al.; Chronic Kidney Disease Prognosis Consortium: Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int 79: 13311340, 2011 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al.; Chronic Kidney Disease Prognosis Consortium: Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int 80: 93104, 2011 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, et al.; Chronic Kidney Disease Prognosis Consortium: Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet 375: 20732081, 2010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    van der Velde M, Matsushita K, Coresh J, Astor BC, Woodward M, Levey A, et al.; Chronic Kidney Disease Prognosis Consortium: Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int 79: 13411352, 2011 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Nitsch D, Grams M, Sang Y, Black C, Cirillo M, Djurdjev O, et al.; Chronic Kidney Disease Prognosis Consortium: Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: A meta-analysis. BMJ 346: f324, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Wen CP, Matsushita K, Coresh J, Iseki K, Islam M, Katz R, et al.; Chronic Kidney Disease Prognosis Consortium: Relative risks of chronic kidney disease for mortality and end-stage renal disease across races are similar. Kidney Int 86: 819827, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Mahmoodi BK, Matsushita K, Woodward M, Blankestijn PJ, Cirillo M, Ohkubo T, et al.; Chronic Kidney Disease Prognosis Consortium: Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: A meta-analysis. Lancet 380: 16491661, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Fox CS, Matsushita K, Woodward M, Bilo HJ, Chalmers J, Heerspink HJ, et al.; Chronic Kidney Disease Prognosis Consortium: Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: A meta-analysis. Lancet 380: 16621673, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Hallan SI, Matsushita K, Sang Y, Mahmoodi BK, Black C, Ishani A, et al.; Chronic Kidney Disease Prognosis Consortium: Age and association of kidney measures with mortality and end-stage renal disease. JAMA 308: 23492360, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Coresh J, Heerspink HJL, Sang Y, Matsushita K, Arnlov J, Astor BC, et al.; Chronic Kidney Disease Prognosis Consortium and Chronic Kidney Disease Epidemiology Collaboration: Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies. Lancet Diabetes Endocrinol 7: 115127, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al.; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration): A new equation to estimate glomerular filtration rate. Ann Intern Med 150: 604612, 2009 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM: Measurement Error in Nonlinear Models: A Modern Perspective, 2nd Ed., New York, Chapman and Hall, 2006

  • 13

    Heerspink HJL, Greene T, Tighiouart H, Gansevoort RT, Coresh J, Simon AL, et al.; Chronic Kidney Disease Epidemiology Collaboration: Change in albuminuria as a surrogate endpoint for progression of kidney disease: A meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol 7: 128139, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Grams ME, Sang Y, Ballew SH, Matsushita K, Astor BC, Carrero JJ, et al.: Evaluating glomerular filtration rate slope as a surrogate end point for ESKD in clinical trials: An individual participant meta-analysis of observational data. J Am Soc Nephrol 30: 17461755, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Inker LA, Heerspink HJL, Tighiouart H, Levey AS, Coresh J, Gansevoort RT, et al.: GFR slope as a surrogate end point for kidney disease progression in clinical trials: A meta-analysis of treatment effects of randomized controlled trials. J Am Soc Nephrol 30: 17351745, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D; Modification of Diet in Renal Disease Study Group: A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Ann Intern Med 130: 461470, 1999 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Stevens LA, Claybon MA, Schmid CH, Chen J, Horio M, Imai E, et al.: Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int 79: 555562, 2011 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Braun L, Wentz A, Baker R, Richardson E, Tsai J: Racialized algorithms for kidney function: Erasing social experience. Soc Sci Med 268: 113548, 2021 PubMed

  • 19

    Delgado C, Baweja M, Burrows NR, Crews DC, Eneanya ND, Gadegbeku CA, et al.: Reassessing the inclusion of race in diagnosing kidney diseases: An interim report from the NKF-ASN Task Force. Am J Kidney Dis 78: 103115, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Diao JA, Wu GJ, Taylor HA, Tucker JK, Powe NR, Kohane IS, et al.: Clinical implications of removing race from estimates of kidney function. JAMA 325: 184186, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Duggal V, Thomas IC, Montez-Rath ME, Chertow GM, Kurella Tamura M: National estimates of CKD prevalence and potential impact of estimating glomerular filtration rate without race. J Am Soc Nephrol 32: 14541463, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Inker LA, Couture SJ, Tighiouart H, Abraham AG, Beck GJ, Feldman HI, et al.; CKD-EPI GFR Collaborators: A new panel-estimated GFR, including β2-microglobulin and β-trace protein and not including race, developed in a diverse population. Am J Kidney Dis 77: 673683.e1, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Anderson AH, Xie D, Wang X, Baudier RL, Orlandi P, Appel LJ, et al.; CRIC Study Investigators: Novel risk factors for progression of diabetic and nondiabetic CKD: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis 77: 5673.e1, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Hannan M, Ansari S, Meza N, Anderson AH, Srivastava A, Waikar S, et al.; CRIC Study Investigators; Chronic Renal Insufficiency Cohort (CRIC) Study Investigators: Risk factors for CKD progression: Overview of findings from the CRIC Study. Clin J Am Soc Nephrol 16: 648659, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Johnson RJ, Bakris GL, Borghi C, Chonchol MB, Feldman D, Lanaspa MA, et al.: Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: Report of a scientific workshop organized by the National Kidney Foundation. Am J Kidney Dis 71: 851865, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Bonino B, Leoncini G, Russo E, Pontremoli R, Viazzi F: Uric acid in CKD: Has the jury come to the verdict? J Nephrol 33: 715724, 2020 PubMed

  • 27

    Doria A, Galecki AT, Spino C, Pop-Busui R, Cherney DZ, Lingvay I, et al.; PERL Study Group: Serum urate lowering with allopurinol and kidney function in type 1 diabetes. N Engl J Med 382: 24932503, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Badve SV, Pascoe EM, Tiku A, Boudville N, Brown FG, Cass A, et al.; CKD-FIX Study Investigators: Effects of allopurinol on the progression of chronic kidney disease. N Engl J Med 382: 25042513, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Kimura K, Hosoya T, Uchida S, Inaba M, Makino H, Maruyama S, et al.; FEATHER Study Investigators: Febuxostat therapy for patients with stage 3 CKD and asymptomatic hyperuricemia: A randomized trial. Am J Kidney Dis 72: 798810, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Smyth A, Griffin M, Yusuf S, Mann JF, Reddan D, Canavan M, et al.: Diet and major renal outcomes: A prospective cohort study. The NIH-AARP Diet and Health Study. J Ren Nutr 26: 288298, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Haring B, Selvin E, Liang M, Coresh J, Grams ME, Petruski-Ivleva N, Steffen LM, Rebholz CM: Dietary protein sources and risk for incident chronic kidney disease: Results from the atherosclerosis risk in communities (ARIC) study. J Ren Nutr 27: 233242, 2017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Kontessis P, Jones S, Dodds R, Trevisan R, Nosadini R, Fioretto P, Borsato M, Sacerdoti D, Viberti G: Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins. Kidney Int 38: 136144, 1990 2166857

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Salmean YA, Segal MS, Langkamp-Henken B, Canales MT, Zello GA, Dahl WJ: Foods with added fiber lower serum creatinine levels in patients with chronic kidney disease. J Ren Nutri 23: e29e32, 2013

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Goraya N, Simoni J, Sager LN, Madias NE, Wesson DE: Urine citrate excretion as a marker of acid retention in patients with chronic kidney disease without overt metabolic acidosis. Kidney Int 95: 11901196, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Mahajan A, Simoni J, Sheather SJ, Broglio KR, Rajab MH, Wesson DE: Daily oral sodium bicarbonate preserves glomerular filtration rate by slowing its decline in early hypertensive nephropathy. Kidney Int 78: 303309, 2010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Goraya N, Simoni J, Jo C, Wesson DE: Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int 81: 8693, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Goraya N, Simoni J, Jo CH, Wesson DE: Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int 86: 10311038, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Raphael KL: Metabolic acidosis and subclinical metabolic acidosis in CKD. J Am Soc Nephrol 29: 376382, 2018 PubMed

  • 39

    Van Slyke DD, Linder GC, Hiller A, Leiter L, McIntosh JF: The excretion of ammonia and titratable acid in nephritis. J Clin Invest 2: 255288, 1926 PubMed

  • 40

    Vallet M, Metzger M, Haymann JP, Flamant M, Gauci C, Thervet E, et al.; NephroTest Cohort Study group: Urinary ammonia and long-term outcomes in chronic kidney disease. Kidney Int 88: 137145, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Raphael KL, Carroll DJ, Murray J, Greene T, Beddhu S: Urine ammonium predicts clinical outcomes in hypertensive kidney disease. J Am Soc Nephrol 28: 24832490, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Goraya N, Simoni J, Jo CH, Wesson DE: A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin J Am Soc Nephrol 8: 371381, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, et al.: Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: A prospective cohort study. Lancet 395: 17631770, 2020

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Fried MW, Crawford JM, Mospan AR, Watkins SE, Munoz B, Zink RC, et al.: Patient characteristics and outcomes of 11 721 patients with coronavirus disease 2019 (COVID-19) hospitalized across the United States. Clin Infect Dis 72: e558e565, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Flythe JE, Assimon MM, Tugman MJ, Chang EH, Gupta S, Shah J, et al.; STOP-COVID Investigators: Characteristics and outcomes of individuals with pre-existing kidney disease and COVID-19 admitted to intensive care units in the United States. Am J Kidney Dis 77: 190203.e1, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Ng JH, Hirsch JS, Hazzan A, Wanchoo R, Shah HH, Malieckal DA, et al.; Northwell Nephrology COVID-19 Research Consortium: Outcomes among patients hospitalized with COVID-19 and acute kidney injury. Am J Kidney Dis 77: 204215.e1, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Cheng HT, Xu X, Lim PS, Hung KY: Worldwide epidemiology of diabetes-related end-stage renal disease, 2000–2015. Diabetes Care 44: 8997, 2021 PubMed

  • 48

    Bhatt DL, Szarek M, Pitt B, Cannon CP, Leiter LA, McGuire DK, et al.; SCORED Investigators: Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med 384: 129139, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al.; DAPA-CKD Trial Committees and Investigators: Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383: 14361446, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Mosenzon O, Wiviott SD, Cahn A, Rozenberg A, Yanuv I, Goodrich EL, et al.: Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: An analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol 7: 606617, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al.; CANVAS Program Collaborative Group: Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377: 644657, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52

    Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al.; CREDENCE Trial Investigators: Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380: 22952306, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53

    Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al.; EMPA-REG OUTCOME Investigators: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373: 21172128, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54

    Neuen BL, Young T, Heerspink HJL, Neal B, Perkovic V, Billot L, et al.: SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol 7: 845854, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55

    Jardine M, Zhou Z, Lambers Heerspink HJ, Hockham C, Li Q, Agarwal R, et al.: Kidney, cardiovascular, and safety outcomes of canagliflozin according to baseline albuminuria: A CREDENCE secondary analysis. Clin J Am Soc Nephrol 16: 384395, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56

    Neuen BL, Ohkuma T, Neal B, Matthews DR, de Zeeuw D, Mahaffey KW, et al.: Relative and absolute risk reductions in cardiovascular and kidney outcomes with canagliflozin across KDIGO risk categories: Findings from the CANVAS program. Am J Kidney Dis 77: 2334.e1, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57

    Heerspink HJL, Karasik A, Thuresson M, Melzer-Cohen C, Chodick G, Khunti K, et al.: Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice (CVD-REAL 3): A multinational observational cohort study. Lancet Diabetes Endocrinol 8: 2735, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58

    Xie Y, Bowe B, Gibson AK, McGill JB, Maddukuri G, Yan Y, et al.: Comparative effectiveness of SGLT2 inhibitors, GLP-1 receptor agonists, DPP-4 inhibitors, and sulfonylureas on risk of kidney outcomes: Emulation of a target trial using health care databases. Diabetes Care 43: 28592869, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59

    Jhund PS, Solomon SD, Docherty KF, Heerspink HJL, Anand IS, Böhm M, et al.: Efficacy of dapagliflozin on renal function and outcomes in patients with heart failure with reduced ejection fraction: Results of DAPA-HF. Circulation 143: 298309, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60

    Anker SD, Butler J, Filippatos G, Khan MS, Marx N, Lam CSP, et al.: Effect of empagliflozin on cardiovascular and renal outcomes in patients with heart failure by baseline diabetes status: Results from the EMPEROR-Reduced Trial. Circulation 143: 337349, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61

    Zannad F, Ferreira JP, Pocock SJ, Anker SD, Butler J, Filippatos G, et al.: SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 396: 819829, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62

    Cherney DZI, Dekkers CCJ, Barbour SJ, Cattran D, Abdul Gafor AH, Greasley PJ, et al.; DIAMOND investigators: Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): A randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol 8: 582593, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63

    Wheeler DC, Toto RD, Stefánsson BV, Jongs N, Chertow GM, Greene T, et al.; DAPA-CKD Trial Committees and Investigators: A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int 100: 215224, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64

    Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al.: Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: A systematic review and meta-analysis. Ann Intern Med 159: 262274, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65

    Heerspink HJL, Cherney DZI: Clinical implications of an acute dip in eGFR after SGLT2 inhibitor initiation. Clin J Am Soc Nephrol 16: 12781280, 2021 PubMed

  • 66

    Nadkarni GN, Ferrandino R, Chang A, Surapaneni A, Chauhan K, Poojary P, et al.: Acute kidney injury in patients on SGLT2 inhibitors: A propensity-matched analysis. Diabetes Care 40: 14791485, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67

    Scheen AJ: An update on the safety of SGLT2 inhibitors. Expert Opin Drug Saf 18: 295311, 2019 PubMed

  • 68

    Heerspink HJL, Parving HH, Andress DL, Bakris G, Correa-Rotter R, Hou FF, et al.; SONAR Committees and Investigators: Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): A double-blind, randomised, placebo-controlled trial. Lancet 393: 19371947, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69

    Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al.; FIDELIO-DKD Investigators: Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med 383: 22192229, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70

    Filippatos G, Anker SD, Agarwal R, Pitt B, Ruilope LM, Rossing P, et al.; FIDELIO-DKD Investigators: Finerenone and cardiovascular outcomes in patients with chronic kidney disease and type 2 diabetes. Circulation 143: 540552, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71

    de Boer IH, Zelnick LR, Ruzinski J, Friedenberg G, Duszlak J, Bubes VY, et al.: Effect of vitamin D and omega-3 fatty acid supplementation on kidney function in patients with type 2 diabetes: A randomized clinical trial. JAMA 322: 18991909, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72

    Ferreira JP, Zannad F, Pocock SJ, Anker SD, Butler J, Filippatos G, et al.: Interplay of mineralocorticoid receptor antagonists and empagliflozin in heart failure: EMPEROR-Reduced. J Am Coll Cardiol 77: 13971407, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73

    Rossing P, Filippatos G, Agarwal R, Anker SD, Pitt B, Ruilope LM, et al.; FIDELIO-DKD Investigators: Finerenone in predominantly advanced CKD and type 2 diabetes with or without sodium-glucose cotransporter-2 inhibitor therapy. Kidney Int Rep 7: 3645, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74

    Heerspink HJL, Kohan DE, de Zeeuw D: New insights from SONAR indicate adding sodium glucose co-transporter 2 inhibitors to an endothelin receptor antagonist mitigates fluid retention and enhances albuminuria reduction. Kidney Int 99: 346349, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75

    Frías JP, Guja C, Hardy E, Ahmed A, Dong F, Öhman P, et al.: Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): A 28 week, multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol 4: 10041016, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76

    Jabbour SA, Frías JP, Hardy E, Ahmed A, Wang H, Öhman P, et al.: Safety and efficacy of exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy: 52-Week results of the DURATION-8 randomized controlled trial. Diabetes Care 41: 21362146, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77

    Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, et al.: 2019 Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 43: 487493, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78

    Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al.; ESC Scientific Document Group: 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 41: 255323, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79

    Riddle MC: American Diabetes Association standards of medical care in diabetes-2019. Diabetes Care 42, 2019

  • 80

    Ueki K, Sasako T, Okazaki Y, Miyake K, Nangaku M, Ohashi Y, et al.; J-DOIT3 Study Group: Multifactorial intervention has a significant effect on diabetic kidney disease in patients with type 2 diabetes. Kidney Int 99: 256266, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81

    Shin JI, Wang D, Fernandes G, Daya N, Grams ME, Golden SH, et al.: Trends in receipt of American Diabetes Association Guideline-recommended care among U.S. adults with diabetes: NHANES 2005–2018. Diabetes Care 44: 13001308, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82

    McCoy RG, Dykhoff HJ, Sangaralingham L, Ross JS, Karaca-Mandic P, Montori VM, et al.: Adoption of new glucose-lowering medications in the U.S.-The case of SGLT2 inhibitors: Nationwide cohort study. Diabetes Technol Ther 21: 702712, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83

    Eberly LA, Yang L, Eneanya ND, Essien U, Julien H, Nathan AS, et al.: Association of race/ethnicity, gender, and socioeconomic status with sodium-glucose cotransporter 2 inhibitor use among patients with diabetes in the US. JAMA Netw Open 4: e216139, 2021 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 849 138 13
Full Text Views 1028 137 3
PDF Downloads 1298 193 5