Cardiorenal Syndrome
View More View Less
  • 1 Department of Medicine (DIMED), University of Padova, Padova, Italy
  • | 2 Department of Nephrology, Dialysis and Transplantation, Fondazione International Renal Research Institute of Vicenza (IRRIV), San Bortolo Hospital, Vicenza, Italy
  • | 3 Department of Kidney Transplantation, Clínica de Doenças Renais de Brasília-DF Star Hospital, Brasília, Brazil
  • | 4 Laboratory of Molecular Pharmacology, University of Brasília, Brasília, Brazil
  • 1

    Ronco C, Haapio M, House AA, Anavekar N, Bellomo R: Cardiorenal syndrome. J Am Coll Cardiol 52: 15271539, 2008 https://doi.org/10.1016/j.jacc.2008.07.051PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, et al.; Acute Dialysis Quality Initiative (ADQI) consensus group: Cardio-renal syndromes: Report from the consensus conference of the acute dialysis quality initiative. Eur Heart J 31: 703711, 2010 https://doi.org/10.1093/eurheartj/ehp507PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3

    Ronco C, McCullough PA, Anker SD, Anand I, Aspromonte N, Bagshaw SM, et al.: Cardiorenal Syndromes: An Executive Summary from the Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). In: Contributions to Nephrology, edited by Ronco C, Bellomo R, McCullough PA, Basel, Karger, 2010, pp 5467, https://doi.org/10.1159/000313745PubMed

    • Search Google Scholar
    • Export Citation
  • 4

    Schefold JC, Filippatos G, Hasenfuss G, Anker SD, von Haehling S: Heart failure and kidney dysfunction: Epidemiology, mechanisms and management. Nat Rev Nephrol 12: 610623, 2016 https://doi.org/10.1038/nrneph.2016.113PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Ricci Z, Romagnoli S, Ronco C: Cardiorenal syndrome. Crit Care Clin 37: 335347, 2021 https://doi.org/10.1016/j.ccc.2020.11.003PubMed

  • 6

    Arrigo M, Jessup M, Mullens W, Reza N, Shah AM, Sliwa K, et al.: Acute heart failure. Nat Rev Dis Primers 6: 16, 2020 https://doi.org/10.1038/s41572-020-0151-7PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Ziaeian B, Fonarow GC: Epidemiology and aetiology of heart failure. Nat Rev Cardiol 13: 368378, 2016 https://doi.org/10.1038/nrcardio.2016.25PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    House AA, Wanner C, Sarnak MJ, Piña IL, McIntyre CW, Komenda P, et al.; Conference Participants: Heart failure in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int 95: 13041317, 2019 https://doi.org/10.1016/j.kint.2019.02.022PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Arrigo M, Gayat E, Parenica J, Ishihara S, Zhang J, Choi DJ, et al.; GREAT Network: Precipitating factors and 90-day outcome of acute heart failure: A report from the intercontinental GREAT registry. Eur J Heart Fail 19: 201208, 2017 https://doi.org/10.1002/ejhf.682PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Husain-Syed F, Gröne HJ, Assmus B, Bauer P, Gall H, Seeger W, et al.: Congestive nephropathy: a neglected entity? Proposal for diagnostic criteria and future perspectives. ESC Heart Fail 8: 183203, 2021 https://doi.org/10.1002/ehf2.13118PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Boorsma EM, Ter Maaten JM, Damman K, Dinh W, Gustafsson F, Goldsmith S, et al.: Congestion in heart failure: A contemporary look at physiology, diagnosis and treatment. Nat Rev Cardiol 17: 641655, 2020 https://doi.org/10.1038/s41569-020-0379-7PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Funahashi Y, Chowdhury S, Eiwaz MB, Hutchens MP: Acute cardiorenal syndrome: Models and heart-kidney connectors. Nephron 144: 629633, 2020 https://doi.org/10.1159/000509353PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Saito S, Uchino S, Takinami M, Uezono S, Bellomo R: Postoperative blood pressure deficit and acute kidney injury progression in vasopressor-dependent cardiovascular surgery patients. Crit Care 20: 74, 2016 https://doi.org/10.1186/s13054-016-1253-1PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Robba C, Citerio G: How I manage intracranial hypertension. Crit Care 23: 243, 2019 PubMed

  • 15

    Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, et al.: Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol 14: 607625, 2018 https://doi.org/10.1038/s41581-018-0052-0PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Wang Y, Bellomo R: Cardiac surgery-associated acute kidney injury: Risk factors, pathophysiology and treatment. Nat Rev Nephrol 13: 697711, 2017 https://doi.org/10.1038/nrneph.2017.119PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Nadim MK, Forni LG, Bihorac A, Hobson C, Koyner JL, Shaw A, et al.: Cardiac and vascular surgery–associated acute kidney injury: The 20th International Consensus Conference of the ADQI (Acute Disease Quality Initiative) Group. J Am Heart Assoc 2018;7. https://doi.org/10.1161/JAHA.118.008834

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18

    Makkar RR, Thourani VH, Mack MJ, Kodali SK, Kapadia S, Webb JG, et al.; PARTNER 2 Investigators: Five-year outcomes of transcatheter or surgical aortic-valve replacement. N Engl J Med 382: 799809, 2020 https://doi.org/10.1056/NEJMoa1910555PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Kliuk-Ben Bassat O, Finkelstein A, Bazan S, Halkin A, Herz I, Salzer Gotler D, et al.: Acute kidney injury after transcatheter aortic valve implantation and mortality risk-long-term follow-up. Nephrol Dial Transplant 35: 433438, 2020 https://doi.org/10.1093/ndt/gfy264PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Haase-Fielitz A, Altendeitering F, Iwers R, Sliziuk V, Barabasch S, Bannehr M, et al.: Acute kidney injury may impede results after transcatheter aortic valve implantation. Clin Kidney J 14: 261268, 2020 https://doi.org/10.1093/ckj/sfaa179PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Reyentovich A, Barghash MH, Hochman JS: Management of refractory cardiogenic shock. Nat Rev Cardiol 13: 481492, 2016 https://doi.org/10.1038/nrcardio.2016.96PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    Baran DA, Grines CL, Bailey S, Burkhoff D, Hall SA, Henry TD, et al.: SCAI clinical expert consensus statement on the classification of cardiogenic shock: This document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter Cardiovasc Interv 94: 2937, 2019 https://doi.org/10.1002/ccd.28329PubMed

    • Search Google Scholar
    • Export Citation
  • 23

    de Chambrun MP, Donker DW, Combes A: What’s new in cardiogenic shock? Intensive Care Med 46: 10161019, 2020 https://doi.org/10.1007/s00134-020-05973-zPubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    Jentzer JC, van Diepen S, Barsness GW, Henry TD, Menon V, Rihal CS, et al.: Cardiogenic shock classification to predict mortality in the cardiac intensive care unit. J Am Coll Cardiol 74: 21172128, 2019 https://doi.org/10.1016/j.jacc.2019.07.077PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Padkins M, Breen T, Van Diepen S, Barsness G, Kashani K, Jentzer JC: Incidence and outcomes of acute kidney injury stratified by cardiogenic shock severity. Catheter Cardiovasc Interv 98: 330340, 2021 https://doi.org/10.1002/ccd.29692PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Tarvasmäki T, Haapio M, Mebazaa A, Sionis A, Silva-Cardoso J, Tolppanen H, et al.; CardShock Study Investigators: Acute kidney injury in cardiogenic shock: Definitions, incidence, haemodynamic alterations, and mortality. Eur J Heart Fail 20: 572581, 2018 https://doi.org/10.1002/ejhf.958PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Forni LG, Joannidis M: Blood pressure deficits in acute kidney injury: Not all about the mean arterial pressure? Crit Care 21: 102, 2017 https://doi.org/10.1186/s13054-017-1683-4PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Soman S, Aurora L: Type 3 cardiorenal syndrome. In: Textbook of Cardiorenal Medicine, edited by McCullough PA, Ronco C, New York, Springer International Publishing, 2021, pp 95110, https://doi.org/10.1007/978-3-030-57460-4_9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Jahnen-Dechent W, Ketteler M: Magnesium basics. Clin Kidney J 5 [Suppl 1]: i3i14, 2012 https://doi.org/10.1093/ndtplus/sfr163PubMed

  • 30

    Moore PK, Hsu RK, Liu KD: Management of acute kidney injury: Core curriculum 2018. Am J Kidney Dis 72: 136148, 2018 https://doi.org/10.1053/j.ajkd.2017.11.021PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Bagshaw SM, Hoste EA, Braam B, Briguori C, Kellum JA, McCullough PA, et al.: Cardiorenal syndrome type 3: Pathophysiologic and epidemiologic considerations. Contrib Nephrol 182: 137157, 2013 https://doi.org/10.1159/000349971PubMed

    • Search Google Scholar
    • Export Citation
  • 32

    Legrand M, Rossignol P: Cardiovascular consequences of acute kidney injury. N Engl J Med 382: 22382247, 2020 https://doi.org/10.1056/NEJMra1916393PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Prud’homme M, Coutrot M, Michel T, Boutin L, Genest M, Poirier F, et al.: Acute kidney injury induces remote cardiac damage and dysfunction through the galectin-3 pathway. JACC Basic Transl Sci 4: 717732, 2019 https://doi.org/10.1016/j.jacbts.2019.06.005PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Di Lullo L, Ronco C: Type-5 cardiorenal syndrome. In: Textbook of Cardiorenal Medicine, edited by McCullough PA, Ronco C, New York, Springer International Publishing, 2021, pp 111124, https://doi.org/10.1007/978-3-030-57460-4_10

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35

    Hollenberg SM, Singer M: Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol 18: 424434, 2021 https://doi.org/10.1038/s41569-020-00492-2PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    Landesberg G, Gilon D, Meroz Y, Georgieva M, Levin PD, Goodman S, et al.: Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur Heart J 33: 895903, 2012 https://doi.org/10.1093/eurheartj/ehr351PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37

    Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent J-L: Sepsis and septic shock. Nat Rev Dis Primers 2: 16045, 2016 https://doi.org/10.1038/nrdp.2016.45PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Virzì GM, Clementi A, Brocca A, Ronco C: Endotoxin effects on cardiac and renal functions and cardiorenal syndromes. Blood Purif 44: 314326, 2017 https://doi.org/10.1159/000480424PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA: Acute kidney injury from sepsis: Current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 96: 10831099, 2019 https://doi.org/10.1016/j.kint.2019.05.026PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40

    Ronco C, Bellomo R, Kellum JA: Acute kidney injury. Lancet 394: 19491964, 2019 https://doi.org/10.1016/S0140-6736(19)32563-2PubMed

  • 41

    Haynes R, Zhu D, Judge PK, Herrington WG, Kalra PA, Baigent C: Chronic kidney disease, heart failure and neprilysin inhibition. Nephrol Dial Transplant 35: 558564, 2020 https://doi.org/10.1093/ndt/gfz058PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42

    McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al.; PARADIGM-HF Investigators and Committees: Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371: 9931004, 2014 https://doi.org/10.1056/NEJMoa1409077PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    James M, Manns B: Neprilysin inhibition and effects on kidney function and surrogates of cardiovascular risk in chronic kidney disease. Circulation 138: 15151518, 2018 https://doi.org/10.1161/CIRCULATIONAHA.118.036523PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    Damman K, Gori M, Claggett B, Jhund PS, Senni M, Lefkowitz MP, et al.: Renal effects and associated outcomes during angiotensin-neprilysin inhibition in heart failure. JACC Heart Fail 6: 489498, 2018 https://doi.org/10.1016/j.jchf.2018.02.004PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45

    Haynes R, Judge PK, Staplin N, Herrington WG, Storey BC, Bethel A, et al.: Effects of sacubitril/valsartan versus irbesartan in patients with chronic kidney disease. Circulation 138: 15051514, 2018 https://doi.org/10.1161/CIRCULATIONAHA.118.034818PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46

    Peppin KL, Tellor KB, Armbruster AL, Schwarze MW: Evaluating the safety and tolerability of inpatient sacubitril/valsartan initiation in a community hospital. J Community Hosp Intern Med Perspect 10: 3844, 2020 https://doi.org/10.1080/20009666.2019.1708638PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47

    McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al.; DAPA-HF Trial Committees and Investigators: Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381: 19952008, 2019 https://doi.org/10.1056/NEJMoa1911303PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48

    Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al.; EMPEROR-Reduced Trial Investigators: Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 383: 14131424, 2020 https://doi.org/10.1056/NEJMoa2022190PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49

    Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou F-F, et al.; DAPA-CKD Trial Committees and Investigators: Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383: 14361446, 2020 https://doi.org/10.1056/NEJMoa2024816PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50

    Rampersad C, Kraut E, Whitlock RH, Komenda P, Woo V, Rigatto C, et al.: Acute kidney injury events in patients with type 2 diabetes using SGLT2 inhibitors versus other glucose-lowering drugs: A retrospective cohort study. Am J Kidney Dis 76: 471479.e1, 2020 https://doi.org/10.1053/j.ajkd.2020.03.019PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51

    Phadke G, Kaushal A, Tolan DR, Hahn K, Jensen T, Bjornstad P, et al.: Osmotic nephrosis and acute kidney injury associated with SGLT2 inhibitor use: A case report. Am J Kidney Dis 76: 144147, 2020 https://doi.org/10.1053/j.ajkd.2020.01.015PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52

    Tardif J-C, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, et al.: Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 381: 24972505, 2019 https://doi.org/10.1056/NEJMoa1912388PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53

    Medani S, Wall C: Colchicine toxicity in renal patients—Are we paying attention? Clin Nephrol 86: 100105, 2016 https://doi.org/10.5414/CN108343PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54

    Sick-day medication list. Can J Diabetes 42: S316, 2018 https://doi.org/10.1016/j.jcjd.2017.10.045

  • 55

    Guzzi LM, Bergler T, Binnall B, Engelman DT, Forni L, Germain MJ, et al.: Clinical use of [TIMP-2]•[IGFBP7] biomarker testing to assess risk of acute kidney injury in critical care: Guidance from an expert panel. Crit Care 23: 225, 2019 https://doi.org/10.1186/s13054-019-2504-8PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56

    Koyner JL, Zarbock A, Basu RK, Ronco C: The impact of biomarkers of acute kidney injury on individual patient care. Nephrol Dial Transplant 35: 12951305, 2020 https://doi.org/10.1093/ndt/gfz188PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57

    Ostermann M, Zarbock A, Goldstein S, Kashani K, Macedo E, Murugan R, et al.: Recommendations on acute kidney injury biomarkers from the Acute Disease Quality Initiative Consensus Conference: A consensus statement. JAMA Netw Open 3: e2019209, 2020 https://doi.org/10.1001/jamanetworkopen.2020.19209PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58

    Kellum JA, Ronco C, Bellomo R: Conceptual advances and evolving terminology in acute kidney disease. Nat Rev Nephrol 17: 493502, 2021 https://doi.org/10.1038/s41581-021-00410-wPubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59

    Ostermann M, Ayis S, Tuddenham E, Lo J, Lei K, Smith J, et al.: Cardiac troponin release is associated with biomarkers of inflammation and ventricular dilatation during critical illness. Shock 47: 702708, 2017 https://doi.org/10.1097/SHK.0000000000000811PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60

    KDIGO Clinical Practice Guideline for Acute Kidney Injury: Kidney Int Suppl 2: 812, 2012 https://doi.org/10.1038/kisup.2012.7

  • 61

    Selby NM, Casula A, Lamming L, Stoves J, Samarasinghe Y, Lewington AJ, et al.: An organizational-level program of intervention for AKI: A pragmatic stepped wedge cluster randomized trial. J Am Soc Nephrol 30: 505515, 2019 https://doi.org/10.1681/ASN.2018090886PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62

    Bagshaw SM: Acute kidney injury care bundles. Nephron 131: 247251, 2015 https://doi.org/10.1159/000437152PubMed

  • 63

    Liu KD, Goldstein SL, Vijayan A, Parikh CR, Kashani K, Okusa MD, et al.; AKI!Now Initiative of the American Society of Nephrology: AKI!Now Initiative: Recommendations for awareness, recognition, and management of AKI. Clin J Am Soc Nephrol 15: 18381847, 2020 https://doi.org/10.2215/CJN.15611219PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64

    Joannidis M, Druml W, Forni LG, Groeneveld ABJ, Honore PM, Hoste E, et al.: Prevention of acute kidney injury and protection of renal function in the intensive care unit: Update 2017: Expert opinion of the Working Group on Prevention, AKI section, European Society of Intensive Care Medicine. Intensive Care Med 43: 730749, 2017 https://doi.org/10.1007/s00134-017-4832-yPubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65

    Zarbock A, Küllmar M, Ostermann M, Lucchese G, Baig K, Cennamo A, et al.: Prevention of cardiac surgery-associated acute kidney injury by implementing the KDIGO guidelines in high-risk patients identified by biomarkers: The PrevAKI-multicenter randomized controlled trial. Anesth Analg 133: 292302, 2021 https://doi.org/10.1213/ANE.0000000000005458PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66

    Sharma A, Zaragoza JJ, Villa G, Ribeiro LC, Lu R, Sartori M, et al.: Optimizing a kidney stress test to evaluate renal functional reserve. Clin Nephrol 86: 1826, 2016 https://doi.org/10.5414/CN108497PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67

    Husain-Syed F, Ferrari F, Sharma A, Danesi TH, Bezerra P, Lopez-Giacoman S, et al.: Preoperative renal functional reserve predicts risk of acute kidney injury after cardiac operation. Ann Thorac Surg 105: 10941101, 2018 https://doi.org/10.1016/j.athoracsur.2017.12.034PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68

    Husain-Syed F, Ferrari F, Sharma A, Hinna Danesi T, Bezerra P, Lopez-Giacoman S, et al.: Persistent decrease of renal functional reserve in patients after cardiac surgery-associated acute kidney injury despite clinical recovery. Nephrol Dial Transplant 34: 308317, 2019 https://doi.org/10.1093/ndt/gfy227PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69

    Mullens W, Damman K, Harjola V-P, Mebazaa A, Brunner-La Rocca H-P, Martens P, et al.: The use of diuretics in heart failure with congestion—A position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 21: 137155, 2019 https://doi.org/10.1002/ejhf.1369PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70

    Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR, et al.; NHLBI Heart Failure Clinical Research Network: Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med 364: 797805, 2011 https://doi.org/10.1056/NEJMoa1005419PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71

    Ellison DH: Clinical pharmacology in diuretic use. Clin J Am Soc Nephrol 14: 12481257, 2019 https://doi.org/10.2215/CJN.09630818PubMed

  • 72

    Ding D, Liu H, Qi W, Jiang H, Li Y, Wu X, et al.: Ototoxic effects and mechanisms of loop diuretics. J Otol 11: 145156, 2016 https://doi.org/10.1016/j.joto.2016.10.001PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73

    Ma G, Ma X, Wang G, Teng W, Hui X: Effects of tolvaptan add-on therapy in patients with acute heart failure: Meta-analysis on randomised controlled trials. BMJ Open 9: e025537, 2019 https://doi.org/10.1136/bmjopen-2018-025537PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74

    Verma S, McMurray JJV: SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review. Diabetologia 61: 21082117, 2018 https://doi.org/10.1007/s00125-018-4670-7PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75

    Kazory A: Ultrafiltration therapy for heart failure: Balancing likely benefits against possible risks. Clin J Am Soc Nephrol 11: 14631471, 2016 https://doi.org/10.2215/CJN.13461215PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76

    Costanzo MR, Ronco C, Abraham WT, Agostoni P, Barasch J, Fonarow GC, et al.: Extracorporeal ultrafiltration for fluid overload in heart failure: Current status and prospects for further research. J Am CollCardiol 69: 24282445, 2017 https://doi.org/10.1016/j.jacc.2017.03.528PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77

    Marenzi G, Muratori M, Cosentino ER, Rinaldi ER, Donghi V, Milazzo V, et al.: Continuous ultrafiltration for congestive heart failure: The CUORE trial. J Card Fail 20: 917, 2014 https://doi.org/10.1016/j.cardfail.2013.11.004PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78

    Costanzo MR, Negoianu D, Jaski BE, Bart BA, Heywood JT, Anand IS, et al.: Aquapheresis versus intravenous diuretics and hospitalizations for heart failure. JACC Heart Fail 4: 95105, 2016 https://doi.org/10.1016/j.jchf.2015.08.005PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79

    Murugan R, Kerti SJ, Chang CH, Gallagher M, Clermont G, Palevsky PM, et al.: Association of net ultrafiltration rate with mortality among critically ill adults with acute kidney injury receiving continuous venovenous hemodiafiltration: A secondary analysis of the randomized evaluation of normal vs augmented level (RENAL) of renal replacement therapy trial. JAMA Netw Open 2: e195418, 2019 https://doi.org/10.1001/jamanetworkopen.2019.5418PubMed

    • Search Google Scholar
    • Export Citation
  • 80

    Naorungroj T, Neto AS, Zwakman-Hessels L, Fumitaka Y, Eastwood G, Murugan R, et al.: Mediators of the impact of hourly net ultrafiltration rate on mortality in critically ill patients receiving continuous renal replacement therapy. Crit Care Med 48: e934e942, 2020 https://doi.org/10.1097/CCM.0000000000004508PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81

    Tehranian S, Shawwa K, Kashani KB: Net ultrafiltration rate and its impact on mortality in patients with acute kidney injury receiving continuous renal replacement therapy. Clin Kidney J 14: 564569, 2019 https://doi.org/10.1093/ckj/sfz179PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82

    Ronco C, Chawla LS: Glomerular and tubular kidney stress test: New tools for a deeper evaluation of kidney function. Nephron 134: 191194, 2016 https://doi.org/10.1159/000449235PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83

    Cullis B, Al-Hwiesh A, Kilonzo K, McCulloch M, Niang A, Nourse P, et al.: ISPD guidelines for peritoneal dialysis in acute kidney injury: 2020 update (adults). Perit Dial Int 41: 1531, 2021 https://doi.org/10.1177/0896860820970834PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84

    Dukka H, Kalra PA, Wilkie M, Bhandari S, Davies SJ, Barratt J, et al.: Peritoneal ultrafiltration for heart failure: Lessons from a randomized controlled trial. Perit Dial Int 39: 486489, 2019 https://doi.org/10.3747/pdi.2018.00272PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85

    Grossekettler L, Schmack B, Meyer K, Brockmann C, Wanninger R, Kreusser MM, et al.: Peritoneal dialysis as therapeutic option in heart failure patients. ESC Heart Fail 6: 271279, 2019 https://doi.org/10.1002/ehf2.12411PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86

    Ponce D, Góes C, Oliveira M, Balbi A: Peritoneal dialysis for the treatment of cardiorenal syndrome type 1: A prospective Brazilian study. Perit Dial Int 37: 578583, 2017 https://doi.org/10.3747/pdi.2016.00217PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87

    Kazory A, Bargman JM: Defining the role of peritoneal dialysis in management of congestive heart failure. Expert Rev Cardiovasc Ther 17: 533543, 2019 https://doi.org/10.1080/14779072.2019.1637254PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88

    Schaubroeck HA, Gevaert S, Bagshaw SM, Kellum JA, Hoste EA: Acute cardiorenal syndrome in acute heart failure: Focus on renal replacement therapy. Eur Heart J Acute Cardiovasc Care 9: 802811, 2020 https://doi.org/10.1177/2048872620936371PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89

    Pineton de Chambrun M, Bréchot N, Combes A: The place of extracorporeal life support in cardiogenic shock. Curr Opin Crit Care 26: 424431, 2020 https://doi.org/10.1097/MCC.0000000000000747PubMed

    • Search Google Scholar
    • Export Citation
  • 90

    Bréchot N, Hajage D, Kimmoun A, Demiselle J, Agerstrand C, Montero S, et al.; International ECMO Network: Venoarterial extracorporeal membrane oxygenation to rescue sepsis-induced cardiogenic shock: A retrospective, multicentre, international cohort study. Lancet 396: 545552, 2020 https://doi.org/10.1016/S0140-6736(20)30733-9PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91

    Selewski DT, Wille KM: Continuous renal replacement therapy in patients treated with extracorporeal membrane oxygenation. Semin Dial 34: 537549, 2021 https://doi.org/10.1111/sdi.12965PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92

    Ronco C, Reis T: Continuous renal replacement therapy and extended indications. Semin Dial 34: 550560, 2021 https://doi.org/10.1111/sdi.12963PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93

    Lascarrou J-B, Merdji H, Le Gouge A, Colin G, Grillet G, Girardie P, et al.; CRICS-TRIGGERSEP Group: Targeted temperature management for cardiac arrest with nonshockable rhythm. N Engl J Med 381: 23272337, 2019 https://doi.org/10.1056/NEJMoa1906661PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94

    Redant S, De Bels D, Honoré PM: Rationale of blood purification in the post-resuscitation syndrome following out-of-hospital cardiac arrest: A narrative review. Blood Purif 50: 750757, 2021 https://doi.org/10.1159/000510127PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95

    Kox M, Waalders NJB, Kooistra EJ, Gerretsen J, Pickkers P: Cytokine levels in critically ill patients with COVID-19 and other conditions. JAMA 324: 1565, 2020 https://doi.org/10.1001/jama.2020.17052PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96

    Boss K, Jahn M, Wendt D, Haidari Z, Demircioglu E, Thielmann M, et al.: Extracorporeal cytokine adsorption: significant reduction of catecholamine requirement in patients with AKI and septic shock after cardiac surgery. PLoS One 16: e0246299, 2021 https://doi.org/10.1371/journal.pone.0246299PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97

    Haidari Z, Wendt D, Thielmann M, Mackowiak M, Neuhäuser M, Jakob H, et al.: Intraoperative hemoadsorption in patients with native mitral valve infective endocarditis. Ann Thorac Surg 110: 890896, 2020 https://doi.org/10.1016/j.athoracsur.2019.12.067PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 208 208 208
Full Text Views 145 145 145
PDF Downloads 191 191 191