Pathophysiology, Prevention, and Nondialytic Treatment of ATN in Hospitalized Patients
View More View Less
  • 1 Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, VA
  • 1

    Singh J, Daftary A: Iodinated contrast media and their adverse reactions. J Nucl Med Technol 36: 6974, 2008 10.2967/jnmt.107.047621PubMed

  • 2

    Bansal S, Patel RN: Pathophysiology of contrast-induced acute kidney injury. Interv Cardiol Clin 9: 293298, 2020 10.1016/j.iccl.2020.03.001PubMed

    • Search Google Scholar
    • Export Citation
  • 3

    Humes HD, Hunt DA, White MD: Direct toxic effect of the radiocontrast agent diatrizoate on renal proximal tubule cells. Am J Physiol 252: F246F255, 1987 10.1152/ajprenal.1987.252.2.F246PubMed

    • Search Google Scholar
    • Export Citation
  • 4

    Messana JM, Cieslinski DA, Nguyen VD, Humes HD: Comparison of the toxicity of the radiocontrast agents, iopamidol and diatrizoate, to rabbit renal proximal tubule cells in vitro. J Pharmacol Exp Ther 244: 11391144, 1988 PubMed

    • Search Google Scholar
    • Export Citation
  • 5

    Romano G, Briguori C, Quintavalle C, Zanca C, Rivera NV, Colombo A, et al.: Contrast agents and renal cell apoptosis. Eur Heart J 29: 25692576, 2008 10.1093/eurheartj/ehn197PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Liu B, Chai Y, Guo W, Lin K, Chen S, Liu J, et al.: MicroRNA-188 aggravates contrast-induced apoptosis by targeting SRSF7 in novel isotonic contrast-induced acute kidney injury rat models and renal tubular epithelial cells. Ann Transl Med 7: 378, 2019 10.21037/atm.2019.07.20PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Kim JE, Bae SY, Ahn SY, Kwon YJ, Ko GJ: The role of nuclear factor erythroid-2-related factor 2 expression in radiocontrast-induced nephropathy. Sci Rep 9: 2608, 2019 10.1038/s41598-019-39534-2PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Heyman SN, Rosen S, Khamaisi M, Idée JM, Rosenberger C: Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy. Invest Radiol 45: 188195, 2010 10.1097/RLI.0b013e3181d2eed8PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Briguori C, Donnarumma E, Quintavalle C, Fiore D, Condorelli G: Contrast-induced acute kidney injury: Potential new strategies. Curr Opin Nephrol Hypertens 24: 145153, 2015 10.1097/MNH.0000000000000106PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Sendeski MM, Persson AB, Liu ZZ, Busch JF, Weikert S, Persson PB, et al.: Iodinated contrast media cause endothelial damage leading to vasoconstriction of human and rat vasa recta. Am J Physiol Renal Physiol 303: F1592F1598, 2012 10.1152/ajprenal.00471.2012PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Heyman SN, Rosenberger C, Rosen S, Khamaisi M: Why is diabetes mellitus a risk factor for contrast-induced nephropathy? BioMed Res Int 2013: 123589, 2013 10.1155/2013/123589PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Brezis M, Rosen S: Hypoxia of the renal medulla--Its implications for disease. N Engl J Med 332: 647655, 1995 PubMed

  • 13

    Heyman SN, Rosen S, Rosenberger C: Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy. Clin J Am Soc Nephrol 3: 288296, 2008 10.2215/CJN.02600607PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Heyman SN, Brezis M, Epstein FH, Spokes K, Silva P, Rosen S: Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int 40: 632642, 1991 10.1038/ki.1991.255PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Liss P, Nygren A, Erikson U, Ulfendahl HR: Injection of low and iso-osmolar contrast medium decreases oxygen tension in the renal medulla. Kidney Int 53: 698702, 1998 10.1046/j.1523-1755.1998.00811.xPubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Workman RJ, Shaff MI, Jackson RV, Diggs J, Frazer MG, Briscoe C: Relationship of renal hemodynamic and functional changes following intravascular contrast to the renin-angiotensin system and renal prostacyclin in the dog. Invest Radiol 18: 160166, 1983 10.1097/00004424-198303000-00012PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Sendeski M, Patzak A, Persson PB: Constriction of the vasa recta, the vessels supplying the area at risk for acute kidney injury, by four different iodinated contrast media, evaluating ionic, nonionic, monomeric and dimeric agents. Invest Radiol 45: 453457, 2010 10.1097/RLI.0b013e3181d77eedPubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18

    Sendeski MM: Pathophysiology of renal tissue damage by iodinated contrast media. Clin Exp Pharmacol Physiol 38: 292299, 2011 10.1111/j.1440-1681.2011.05503.xPubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Aspelin P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ; Nephrotoxicity in High-Risk Patients Study of Iso-Osmolar and Low-Osmolar Non-Ionic Contrast Media Study Investigators: Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med 348: 491499, 2003 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Solomon R: Contrast media: Are there differences in nephrotoxicity among contrast media? BioMed Res Int 2014: 934947, 2014 10.1155/2014/934947PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Heinrich MC, Häberle L, Müller V, Bautz W, Uder M: Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: Meta-analysis of randomized controlled trials. Radiology 250: 6886, 2009 10.1148/radiol.2501080833PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    Weisbord SD, Palevsky PM: Strategies for the prevention of contrast-induced acute kidney injury. Curr Opin Nephrol Hypertens 19: 539549, 2010 10.1097/MNH.0b013e32833d42e3PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Jost G, Lengsfeld P, Lenhard DC, Pietsch H, Hütter J, Sieber MA: Viscosity of iodinated contrast agents during renal excretion. Eur J Radiol 80: 373377, 2011 10.1016/j.ejrad.2011.02.003PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    Fähling M, Seeliger E, Patzak A, Persson PB: Understanding and preventing contrast-induced acute kidney injury. Nat Rev Nephrol 13: 169180, 2017 10.1038/nrneph.2016.196PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Persson PB, Hansell P, Liss P: Pathophysiology of contrast medium-induced nephropathy. Kidney Int 68: 1422, 2005 10.1111/j.1523-1755.2005.00377.xPubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ: New insights into the mechanism of aminoglycoside nephrotoxicity: An integrative point of view. Kidney Int 79: 3345, 2011 10.1038/ki.2010.337PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Nagai J, Tanaka H, Nakanishi N, Murakami T, Takano M: Role of megalin in renal handling of aminoglycosides. Am J Physiol Renal Physiol 281: F337F344, 2001 10.1152/ajprenal.2001.281.2.F337PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Schmitz C, Hilpert J, Jacobsen C, Boensch C, Christensen EI, Luft FC, et al.: Megalin deficiency offers protection from renal aminoglycoside accumulation. J Biol Chem 277: 618622, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Raggi C, Fujiwara K, Leal T, Jouret F, Devuyst O, Terryn S: Decreased renal accumulation of aminoglycoside reflects defective receptor-mediated endocytosis in cystic fibrosis and Dent’s disease. Pflugers Arch 462: 851860, 2011 10.1007/s00424-011-1026-2PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Silverblatt F: Pathogenesis of nephrotoxicity of cephalosporins and aminoglycosides: A review of current concepts. Rev Infect Dis 4[Suppl]: S360S365, 1982 10.1093/clinids/4.supplement_2.s360PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Silverblatt FJ, Kuehn C: Autoradiography of gentamicin uptake by the rat proximal tubule cell. Kidney Int 15: 335345, 1979 10.1038/ki.1979.45PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Sandoval RM, Molitoris BA: Gentamicin traffics retrograde through the secretory pathway and is released in the cytosol via the endoplasmic reticulum. Am J Physiol Renal Physiol 286: F617F624, 2004 10.1152/ajprenal.00130.200300130.2003PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Sandoval RM, Dunn KW, Molitoris BA: Gentamicin traffics rapidly and directly to the Golgi complex in LLC-PK(1) cells. Am J Physiol Renal Physiol 279: F884F890, 2000 10.1152/ajprenal.2000.279.5.F884PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Simmons Jr. CF, Bogusky RT, Humes HD: Inhibitory effects of gentamicin on renal mitochondrial oxidative phosphorylation. J Pharmacol Exp Ther 214: 709715, 1980 PubMed

    • Search Google Scholar
    • Export Citation
  • 35

    Morales AI, Detaille D, Prieto M, Puente A, Briones E, Arévalo M, et al.: Metformin prevents experimental gentamicin-induced nephropathy by a mitochondria-dependent pathway. Kidney Int 77: 861869, 2010 10.1038/ki.2010.11PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    Walker PD, Shah SV: Evidence suggesting a role for hydroxyl radical in gentamicin-induced acute renal failure in rats. J Clin Invest 81: 334341, 1988 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37

    Cuzzocrea S, Mazzon E, Dugo L, Serraino I, Di Paola R, Britti D, et al.: A role for superoxide in gentamicin-mediated nephropathy in rats. Eur J Pharmacol 450: 6776, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Monteil C, Leclere C, Fillastre JP, Morin JP: Characterization of gentamicin-induced dysfunctions in vitro: The use of optimized primary cultures of rabbit proximal tubule cells. Ren Fail 15: 475483, 1993 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    Bennett WM, Mela-Riker LM, Houghton DC, Gilbert DN, Buss WC: Microsomal protein synthesis inhibition: An early manifestation of gentamicin nephrotoxicity. Am J Physiol 255: F265F269, 1988 PubMed

    • Search Google Scholar
    • Export Citation
  • 40

    Horibe T, Matsui H, Tanaka M, Nagai H, Yamaguchi Y, Kato K, et al.: Gentamicin binds to the lectin site of calreticulin and inhibits its chaperone activity. Biochem Biophys Res Commun 323: 281287, 2004 10.1016/j.bbrc.2004.08.099PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    Humes HD: Aminoglycoside nephrotoxicity. Kidney Int 33: 900911, 1988 PubMed

  • 42

    Bennett WM: Mechanisms of aminoglycoside nephrotoxicity. Clin Exp Pharmacol Physiol 16: 16, 1989 PubMed

  • 43

    Hori Y, Aoki N, Kuwahara S, Hosojima M, Kaseda R, Goto S, et al.: Megalin blockade with cilastatin suppresses drug-induced nephrotoxicity. J Am Soc Nephrol 28: 17831791, 2017 10.1681/ASN.2016060606PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    Rea RS, Capitano B: Optimizing use of aminoglycosides in the critically ill. Semin Respir Crit Care Med 28: 596603, 2007 10.1055/s-2007-996406PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45

    Rougier F, Claude D, Maurin M, Maire P: Aminoglycoside nephrotoxicity. Curr Drug Targets Infect Disord 4: 153162, 2004 PubMed

  • 46

    Hatala R, Dinh T, Cook DJ: Once-daily aminoglycoside dosing in immunocompetent adults: A meta-analysis. Ann Intern Med 124: 717725, 1996 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47

    Levine DP: Vancomycin: A history. Clin Infect Dis 42[Suppl 1]: S5S12, 2006 10.1086/491709PubMed

  • 48

    Hazlewood KA, Brouse SD, Pitcher WD, Hall RG: Vancomycin-associated nephrotoxicity: Grave concern or death by character assassination? Am J Med 123: 182.e1182.e7, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49

    Moellering Jr. RC: Vancomycin: A 50-year reassessment. Clin Infect Dis 42[Suppl 1]: S3S4, 2006 10.1086/491708PubMed

  • 50

    Jeffres MN, Isakow W, Doherty JA, Micek ST, Kollef MH: A retrospective analysis of possible renal toxicity associated with vancomycin in patients with health care-associated methicillin-resistant Staphylococcus aureus pneumonia. Clin Ther 29: 11071115, 2007 10.1016/j.clinthera.2007.06.014PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51

    Pritchard L, Baker C, Leggett J, Sehdev P, Brown A, Bayley KB: Increasing vancomycin serum trough concentrations and incidence of nephrotoxicity. Am J Med 123: 11431149, 2010 10.1016/j.amjmed.2010.07.025PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52

    Rutter WC, Cox JN, Martin CA, Burgess DR, Burgess DS: Nephrotoxicity during vancomycin therapy in combination with piperacillin-tazobactam or cefepime. Antimicrob Agents Chemother 61: e02089-16, 2017 10.1128/AAC.02089-16PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53

    Bosso JA, Nappi J, Rudisill C, Wellein M, Bookstaver PB, Swindler J, et al.: Relationship between vancomycin trough concentrations and nephrotoxicity: A prospective multicenter trial. Antimicrob Agents Chemother 55: 54755479, 2011 10.1128/AAC.00168-11PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54

    Lodise TP, Lomaestro B, Graves J, Drusano GL: Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother 52: 13301336, 2008 10.1128/AAC.01602-07PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55

    Sakamoto Y, Yano T, Hanada Y, Takeshita A, Inagaki F, Masuda S, et al.: Vancomycin induces reactive oxygen species-dependent apoptosis via mitochondrial cardiolipin peroxidation in renal tubular epithelial cells. Eur J Pharmacol 800: 4856, 2017 10.1016/j.ejphar.2017.02.025PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56

    Nishino Y, Takemura S, Minamiyama Y, Hirohashi K, Ogino T, Inoue M, et al.: Targeting superoxide dismutase to renal proximal tubule cells attenuates vancomycin-induced nephrotoxicity in rats. Free Radic Res 37: 373379, 2003 10.1080/1071576031000061002PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57

    Bamgbola O: Review of vancomycin-induced renal toxicity: An update. Ther Adv Endocrinol Metab 7: 136147, 2016 10.1177/2042018816638223PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58

    Arimura Y, Yano T, Hirano M, Sakamoto Y, Egashira N, Oishi R: Mitochondrial superoxide production contributes to vancomycin-induced renal tubular cell apoptosis. Free Radic Biol Med 52: 18651873, 2012 10.1016/j.freeradbiomed.2012.02.038PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59

    Humanes B, Jado JC, Camaño S, López-Parra V, Torres AM, Álvarez-Sala LA, et al.: Protective effects of cilastatin against vancomycin-induced nephrotoxicity. BioMed Res Int 2015: 704382, 2015 10.1155/2015/704382PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60

    Dalaklioglu S, Tekcan M, Gungor NE, Celik-Ozenci C, Aksoy NH, Baykal A, et al.: Role of the poly(ADP-ribose)polymerase activity in vancomycin-induced renal injury. Toxicol Lett 192: 9196, 2010 10.1016/j.toxlet.2009.10.002PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61

    Luque Y, Louis K, Jouanneau C, Placier S, Esteve E, Bazin D, et al.: Vancomycin-associated cast nephropathy. J Am Soc Nephrol 28: 17231728, 2017 10.1681/ASN.2016080867PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62

    Manohar S, Leung N: Cisplatin nephrotoxicity: A review of the literature. J Nephrol 31: 1525, 2018 10.1007/s40620-017-0392-zPubMed

  • 63

    Nakamura T, Yonezawa A, Hashimoto S, Katsura T, Inui K: Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity. Biochem Pharmacol 80: 17621767, 2010 10.1016/j.bcp.2010.08.019PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64

    Boulikas T, Vougiouka M: Cisplatin and platinum drugs at the molecular level. (Review). Oncol Rep 10: 16631682, 2003 PubMed

  • 65

    Galea AM, Murray V: The interaction of cisplatin and analogues with DNA in reconstituted chromatin. Biochim Biophys Acta 1579: 142152, 2002 10.1016/s0167-4781(02)00535-3PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66

    Gordon JA, Gattone 2nd VH: Mitochondrial alterations in cisplatin-induced acute renal failure. Am J Physiol 250: F991F998, 1986 10.1152/ajprenal.1986.250.6.F991PubMed

    • Search Google Scholar
    • Export Citation
  • 67

    Yang Y, Liu H, Liu F, Dong Z: Mitochondrial dysregulation and protection in cisplatin nephrotoxicity. Arch Toxicol 88: 12491256, 2014 10.1007/s00204-014-1239-1PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68

    Winston JA, Safirstein R: Reduced renal blood flow in early cisplatin-induced acute renal failure in the rat. Am J Physiol 249: F490F496, 1985 10.1152/ajprenal.1985.249.4.F490PubMed

    • Search Google Scholar
    • Export Citation
  • 69

    Luke DR, Vadiei K, Lopez-Berestein G: Role of vascular congestion in cisplatin-induced acute renal failure in the rat. Nephrol Dial Transplant 7: 17, 1992 PubMed

    • Search Google Scholar
    • Export Citation
  • 70

    Ramesh G, Reeves WB: p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. Am J Physiol Renal Physiol 289: F166F174, 2005 10.1152/ajprenal.00401.2004PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71

    Ramesh G, Reeves WB: TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest 110: 835842, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72

    Li S, Gokden N, Okusa MD, Bhatt R, Portilla D: Anti-inflammatory effect of fibrate protects from cisplatin-induced ARF. Am J Physiol Renal Physiol 289: F469F480, 2005 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73

    Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM, Dong Z: Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int 74: 631640, 2008 10.1038/ki.2008.214PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74

    Sharp CN, Doll MA, Dupre TV, Shah PP, Subathra M, Siow D, et al.: Repeated administration of low-dose cisplatin in mice induces fibrosis. Am J Physiol Renal Physiol 310: F560F568, 2016 10.1152/ajprenal.00512.2015PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75

    Latcha S, Jaimes EA, Patil S, Glezerman IG, Mehta S, Flombaum CD: Long-term renal outcomes after cisplatin treatment. Clin J Am Soc Nephrol 11: 11731179, 2016 10.2215/CJN.08070715PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76

    Arany I, Safirstein RL: Cisplatin nephrotoxicity. Semin Nephrol 23: 460464, 2003 PubMed

  • 77

    Hurst FP, Abbott KC: Acute phosphate nephropathy. Curr Opin Nephrol Hypertens 18: 513518, 2009 10.1097/MNH.0b013e32833096afPubMed

  • 78

    Markowitz GS, Perazella MA: Acute phosphate nephropathy. Kidney Int 76: 10271034, 2009 10.1038/ki.2009.308PubMed

  • 79

    Markowitz GS, Stokes MB, Radhakrishnan J, D’Agati VD: Acute phosphate nephropathy following oral sodium phosphate bowel purgative: An underrecognized cause of chronic renal failure. J Am Soc Nephrol 16: 33893396, 2005 10.1681/ASN.2005050496PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80

    Gburek J, Birn H, Verroust PJ, Goj B, Jacobsen C, Moestrup SK, et al.: Renal uptake of myoglobin is mediated by the endocytic receptors megalin and cubilin. Am J Physiol Renal Physiol 285: F451F458, 2003 10.1152/ajprenal.00062.2003PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81

    Zager RA: Studies of mechanisms and protective maneuvers in myoglobinuric acute renal injury. Lab Invest 60: 619629, 1989 PubMed

  • 82

    Song SJ, Kim SM, Lee SH, Moon JY, Hwang HS, Kim JS, et al.: Rhabdomyolysis-induced AKI was ameliorated in NLRP3 KO mice via alleviation of mitochondrial lipid peroxidation in renal tubular cells. Int J Mol Sci 21: 8564, 2020 10.3390/ijms21228564PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83

    Sanders PW, Booker BB, Bishop JB, Cheung HC: Mechanisms of intranephronal proteinaceous cast formation by low molecular weight proteins. J Clin Invest 85: 570576, 1990 10.1172/JCI114474PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84

    Reeder BJ, Sharpe MA, Kay AD, Kerr M, Moore K, Wilson MT: Toxicity of myoglobin and haemoglobin: Oxidative stress in patients with rhabdomyolysis and subarachnoid haemorrhage. Biochem Soc Trans 30: 745748, 2002 10.1042/bst0300745PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85

    Zorova LD, Pevzner IB, Chupyrkina AA, Zorov SD, Silachev DN, Plotnikov EY, et al.: The role of myoglobin degradation in nephrotoxicity after rhabdomyolysis. Chem Biol Interact 256: 6470, 2016 10.1016/j.cbi.2016.06.020PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86

    Plotnikov EY, Chupyrkina AA, Pevzner IB, Isaev NK, Zorov DB: Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney’s mitochondria. Biochim Biophys Acta 1792: 796803, 2009 10.1016/j.bbadis.2009.06.005PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87

    Nath KA, Balla G, Vercellotti GM, Balla J, Jacob HS, Levitt MD, et al.: Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat. J Clin Invest 90: 267270, 1992 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88

    Zarjou A, Bolisetty S, Joseph R, Traylor A, Apostolov EO, Arosio P, et al.: Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury. J Clin Invest 123: 44234434, 2013 10.1172/JCI67867PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89

    Zager RA, Burkhart KM: Differential effects of glutathione and cysteine on Fe2+, Fe3+, H2O2 and myoglobin-induced proximal tubular cell attack. Kidney Int 53: 16611672, 1998 10.1046/j.1523-1755.1998.00919.xPubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90

    Basnayake K, Stringer SJ, Hutchison CA, Cockwell P: The biology of immunoglobulin free light chains and kidney injury. Kidney Int 79: 12891301, 2011 10.1038/ki.2011.94PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91

    Klassen RB, Allen PL, Batuman V, Crenshaw K, Hammond TG: Light chains are a ligand for megalin. J Appl Physiol (1985) 98: 257263, 2005 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92

    Li M, Balamuthusamy S, Simon EE, Batuman V: Silencing megalin and cubilin genes inhibits myeloma light chain endocytosis and ameliorates toxicity in human renal proximal tubule epithelial cells. Am J Physiol Renal Physiol 295: F82F90, 2008 10.1152/ajprenal.00091.2008PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93

    Sanders PW: Mechanisms of light chain injury along the tubular nephron. J Am Soc Nephrol 23: 17771781, 2012 10.1681/ASN.2012040388PubMed

  • 94

    Sanders PW, Herrera GA, Galla JH: Human Bence Jones protein toxicity in rat proximal tubule epithelium in vivo. Kidney Int 32: 851861, 1987 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95

    Sanders PW, Herrera GA, Chen A, Booker BB, Galla JH: Differential nephrotoxicity of low molecular weight proteins including Bence Jones proteins in the perfused rat nephron in vivo. J Clin Invest 82: 20862096, 1988 10.1172/JCI113830PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96

    Wang PX, Sanders PW: Immunoglobulin light chains generate hydrogen peroxide. J Am Soc Nephrol 18: 12391245, 2007 10.1681/ASN.2006111299PubMed

  • 97

    Basnayake K, Ying WZ, Wang PX, Sanders PW: Immunoglobulin light chains activate tubular epithelial cells through redox signaling. J Am Soc Nephrol 21: 11651173, 2010 10.1681/ASN.2009101089PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98

    Ying WZ, Wang PX, Aaron KJ, Basnayake K, Sanders PW: Immunoglobulin light chains activate nuclear factor-κB in renal epithelial cells through a Src-dependent mechanism. Blood 117: 13011307, 2011 10.1182/blood-2010-08-302505PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99

    Ying WZ, Wang PX, Sanders PW: Pivotal role of apoptosis signal-regulating kinase 1 in monoclonal free light chain-mediated apoptosis. Am J Pathol 180: 4147, 2012 10.1016/j.ajpath.2011.09.017PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100

    Rabb H, Griffin MD, McKay DB, Swaminathan S, Pickkers P, Rosner MH, et al.; Acute Dialysis Quality Initiative Consensus XIII Work Group: Inflammation in AKI: Current understanding, key questions, and knowledge gaps. J Am Soc Nephrol 27: 371379, 2016 10.1681/ASN.2015030261PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101

    Zeisberg M, Neilson EG: Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol 21: 18191834, 2010 10.1681/ASN.2010080793PubMed

  • 102

    Chauveau D, Choukroun G: Bence Jones proteinuria and myeloma kidney. Nephrol Dial Transplant 11: 413415, 1996 PubMed

  • 103

    Ying WZ, Allen CE, Curtis LM, Aaron KJ, Sanders PW: Mechanism and prevention of acute kidney injury from cast nephropathy in a rodent model. J Clin Invest 122: 17771785, 2012 10.1172/JCI46490PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 104

    Molinari L, Sakhuja A, Kellum JA: Perioperative renoprotection: General mechanisms and treatment approaches. Anesth Analg 131: 16791692, 2020 10.1213/ANE.0000000000005107PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105

    Billings 4th FT, Lopez MG, Shaw AD: The incidence, risk, presentation, pathophysiology, treatment, and effects of perioperative acute kidney injury. Can J Anaesth 68: 409422, 2021 10.1007/s12630-020-01894-zPubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 106

    McLean DJ, Shaw AD: Intravenous fluids: Effects on renal outcomes. Br J Anaesth 120: 397402, 2018 10.1016/j.bja.2017.11.090PubMed

  • 107

    Chong MA, Wang Y, Berbenetz NM, McConachie I: Does goal-directed haemodynamic and fluid therapy improve peri-operative outcomes?: A systematic review and meta-analysis. Eur J Anaesthesiol 35: 469483, 2018 10.1097/EJA.0000000000000778PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 108

    Ostermann M, Bellomo R, Burdmann EA, Doi K, Endre ZH, Goldstein SL, et al.; Conference Participants: Controversies in acute kidney injury: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney Int 98: 294309, 2020 10.1016/j.kint.2020.04.020PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 109

    Zarychanski R, Abou-Setta AM, Turgeon AF, Houston BL, McIntyre L, Marshall JC, et al.: Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: A systematic review and meta-analysis. JAMA 309: 678688, 2013 10.1001/jama.2013.430PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 110

    Giglio M, Dalfino L, Puntillo F, Brienza N: Hemodynamic goal-directed therapy and postoperative kidney injury: An updated meta-analysis with trial sequential analysis. Crit Care 23: 232, 2019 10.1186/s13054-019-2516-4PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 111

    Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, et al.; ARISE Investigators; ANZICS Clinical Trials Group: Goal-directed resuscitation for patients with early septic shock. N Engl J Med 371: 14961506, 2014 10.1056/NEJMoa1404380PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 112

    Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, et al.; ProCESS Investigators: A randomized trial of protocol-based care for early septic shock. N Engl J Med 370: 16831693, 2014 10.1056/NEJMoa1401602PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 113

    Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al.; ProMISe Trial Investigators: Trial of early, goal-directed resuscitation for septic shock. N Engl J Med 372: 13011311, 2015 10.1056/NEJMoa1500896PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 114

    Brien LD, Oermann MH, Molloy M, Tierney C: Implementing a goal-directed therapy protocol for fluid resuscitation in the cardiovascular intensive care unit. AACN Adv Crit Care 31: 364370, 2020 10.4037/aacnacc2020582PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 115

    Finfer S, Myburgh J, Bellomo R: Intravenous fluid therapy in critically ill adults. Nat Rev Nephrol 14: 541557, 2018 10.1038/s41581-018-0044-0PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 116

    Ostermann M, Liu K, Kashani K: Fluid management in acute kidney injury. Chest 156: 594603, 2019 10.1016/j.chest.2019.04.004PubMed

  • 117

    Singh P, Okusa MD: The role of tubuloglomerular feedback in the pathogenesis of acute kidney injury. Contrib Nephrol 174: 1221, 2011 10.1159/000329229PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 118

    Wilcox CS: Regulation of renal blood flow by plasma chloride. J Clin Invest 71: 726735, 1983 10.1172/jci110820PubMed

  • 119

    Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, et al.; SPLIT Investigators; ANZICS CTG: Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: The SPLIT randomized clinical trial. JAMA 314: 17011710, 2015 10.1001/jama.2015.12334PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 120

    Self WH, Semler MW, Wanderer JP, Wang L, Byrne DW, Collins SP, et al.; SALT-ED Investigators: Balanced crystalloids versus saline in noncritically ill adults. N Engl J Med 378: 819828, 2018 10.1056/NEJMoa1711586PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 121

    Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, et al.; SMART Investigators and the Pragmatic Critical Care Research Group: Balanced crystalloids versus saline in critically ill adults. N Engl J Med 378: 829839, 2018 10.1056/NEJMoa1711584PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 122

    Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M: Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 308: 15661572, 2012 10.1001/jama.2012.13356PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 123

    Krajewski ML, Raghunathan K, Paluszkiewicz SM, Schermer CR, Shaw AD: Meta-analysis of high- versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg 102: 2436, 2015 10.1002/bjs.9651PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 124

    Joannidis M, Forni LG: Acute kidney injury: Buffered crystalloids or saline in the ICU--a SPLIT decision. Nat Rev Nephrol 12: 68, 2016 10.1038/nrneph.2015.190PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 125

    Küllmar M, Zarbock A, Engelman DT, Chatterjee S, Wagner NM: Prevention of acute kidney injury. Crit Care Clin 36: 691704, 2020 10.1016/j.ccc.2020.07.002PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 126

    Pfortmueller CA, Funk GC, Reiterer C, Schrott A, Zotti O, Kabon B, et al.: Normal saline versus a balanced crystalloid for goal-directed perioperative fluid therapy in major abdominal surgery: A double-blind randomised controlled study. Br J Anaesth 120: 274283, 2018 10.1016/j.bja.2017.11.088PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 127

    Miller TE, Myles PS: Perioperative fluid therapy for major surgery. Anesthesiology 130: 825832, 2019 10.1097/ALN.0000000000002603PubMed

  • 128

    Zarbock A, Koyner JL, Hoste EAJ, Kellum JA: Update on perioperative acute kidney injury. Anesth Analg 127: 12361245, 2018 10.1213/ANE.0000000000003741PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 129

    Ostermann M, Cennamo A, Meersch M, Kunst G: A narrative review of the impact of surgery and anaesthesia on acute kidney injury. Anaesthesia 75[Suppl 1]: e121e133, 2020 10.1111/anae.14932PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 130

    Gumbert SD, Kork F, Jackson ML, Vanga N, Ghebremichael SJ, Wang CY, et al.: Perioperative acute kidney injury. Anesthesiology 132: 180204, 2020 10.1097/ALN.0000000000002968PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 131

    Meersch M, Schmidt C, Zarbock A: Perioperative acute kidney injury: An under-recognized problem. Anesth Analg 125: 12231232, 2017 10.1213/ANE.0000000000002369PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 132

    Tseng CH, Chen TT, Wu MY, Chan MC, Shih MC, Tu YK: Resuscitation fluid types in sepsis, surgical, and trauma patients: A systematic review and sequential network meta-analyses. Crit Care 24: 693, 2020 10.1186/s13054-020-03419-yPubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 133

    Zampieri FG, Azevedo LCP, Corrêa TD, Falavigna M, Machado FR, Assunção MSC, et al.; BaSICS Investigators and the BRICNet: Study protocol for the Balanced Solution versus Saline in Intensive Care Study (BaSICS): A factorial randomised trial. Crit Care Resusc 19: 175182, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 134

    Hammond NE, Bellomo R, Gallagher M, Gattas D, Glass P, Mackle D, et al.: The Plasma-Lyte 148 v Saline (PLUS) study protocol: A multicentre, randomised controlled trial of the effect of intensive care fluid therapy on mortality. Crit Care Resusc 19: 239246, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 135

    Haines RW, Kirwan CJ, Prowle JR: Managing chloride and bicarbonate in the prevention and treatment of acute kidney injury. Semin Nephrol 39: 473483, 2019 10.1016/j.semnephrol.2019.06.007PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 136

    Romagnoli S, Ricci Z, Ronco C: Perioperative acute kidney injury: Prevention, early recognition, and supportive measures. Nephron 140: 105110, 2018 10.1159/000490500PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 137

    Srisawat N, Kellum JA: The role of biomarkers in acute kidney injury. Crit Care Clin 36: 125140, 2020 10.1016/j.ccc.2019.08.010PubMed

  • 138

    de Geus HR, Ronco C, Haase M, Jacob L, Lewington A, Vincent JL: The cardiac surgery-associated neutrophil gelatinase-associated lipocalin (CSA-NGAL) score: A potential tool to monitor acute tubular damage. J Thorac Cardiovasc Surg 151: 14761481, 2016 10.1016/j.jtcvs.2016.01.037PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 139

    Antonelli A, Allinovi M, Cocci A, Russo GI, Schiavina R, Rocco B, et al.; AGILE Group: The predictive role of biomarkers for the detection of acute kidney injury after partial or radical nephrectomy: A systematic review of the literature. Eur Urol Focus 6: 344353, 2020 10.1016/j.euf.2018.09.020PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 140

    Küllmar M, Massoth C, Ostermann M, Campos S, Grau Novellas N, Thomson G, et al.: Biomarker-guided implementation of the KDIGO guidelines to reduce the occurrence of acute kidney injury in patients after cardiac surgery (PrevAKI-multicentre): Protocol for a multicentre, observational study followed by randomised controlled feasibility trial. BMJ Open 10: e034201, 2020 10.1136/bmjopen-2019-034201PubMed

    • Search Google Scholar
    • Export Citation
  • 141

    Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, et al.: Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 17: R25, 2013 10.1186/cc12503PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 142

    Vanmassenhove J, Vanholder R, Nagler E, Van Biesen W: Urinary and serum biomarkers for the diagnosis of acute kidney injury: An in-depth review of the literature. Nephrol Dial Transplant 28: 254273, 2013 10.1093/ndt/gfs380PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 143

    Cummings JJ, Shaw AD, Shi J, Lopez MG, O’Neal JB, Billings 4th FT: Intraoperative prediction of cardiac surgery-associated acute kidney injury using urinary biomarkers of cell cycle arrest. J Thorac Cardiovasc Surg 157: 15451553.e5, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 144

    Meersch M, Schmidt C, Van Aken H, Martens S, Rossaint J, Singbartl K, et al.: Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS One 9: e93460, 2014 10.1371/journal.pone.0093460PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 145

    Pilarczyk K, Edayadiyil-Dudasova M, Wendt D, Demircioglu E, Benedik J, Dohle DS, et al.: Urinary [TIMP-2]*[IGFBP7] for early prediction of acute kidney injury after coronary artery bypass surgery. Ann Intensive Care 5: 50, 2015 10.1186/s13613-015-0076-6PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 146

    Gameiro J, Branco T, Lopes JA: Artificial intelligence in acute kidney injury risk prediction. J Clin Med 9: 678, 2020 10.3390/jcm9030678PubMed

  • 147

    Kashani KB: Automated acute kidney injury alerts. Kidney Int 94: 484490, 2018 10.1016/j.kint.2018.02.014PubMed

  • 148

    Wilson FP, Martin M, Yamamoto Y, Partridge C, Moreira E, Arora T, et al.: Electronic health record alerts for acute kidney injury: Multicenter, randomized clinical trial. BMJ 372: m4786, 2021 10.1136/bmj.m4786PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 149

    Wilson FP, Shashaty M, Testani J, Aqeel I, Borovskiy Y, Ellenberg SS, et al.: Automated, electronic alerts for acute kidney injury: A single-blind, parallel-group, randomised controlled trial. Lancet 385: 19661974, 2015 10.1016/S0140-6736(15)60266-5PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 150

    Lachance P, Villeneuve PM, Rewa OG, Wilson FP, Selby NM, Featherstone RM, et al.: Association between e-alert implementation for detection of acute kidney injury and outcomes: A systematic review. Nephrol Dial Transplant 32: 265272, 2017 10.1093/ndt/gfw424PubMed

    • Search Google Scholar
    • Export Citation
  • 151

    Menon S, Tarrago R, Carlin K, Wu H, Yonekawa K: Impact of integrated clinical decision support systems in the management of pediatric acute kidney injury: A pilot study. Pediatr Res 89: 11641170, 2021 10.1038/s41390-020-1046-8PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 152

    Martin M, Wilson FP: Utility of electronic medical record alerts to prevent drug nephrotoxicity. Clin J Am Soc Nephrol 14: 115123, 2019 10.2215/CJN.13841217PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 153

    Goldstein SL, Mottes T, Simpson K, Barclay C, Muething S, Haslam DB, et al.: A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int 90: 212221, 2016 10.1016/j.kint.2016.03.031PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 154

    Goldstein SL, Dahale D, Kirkendall ES, Mottes T, Kaplan H, Muething S, et al.: A prospective multi-center quality improvement initiative (NINJA) indicates a reduction in nephrotoxic acute kidney injury in hospitalized children. Kidney Int 97: 580588, 2020 10.1016/j.kint.2019.10.015PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 155

    KDIGO Work Group: KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl 2: 1138, 2012

  • 156

    Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, et al.: Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: The PrevAKI randomized controlled trial. Intensive Care Med 43: 15511561, 2017 10.1007/s00134-016-4670-3PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 157

    Göcze I, Jauch D, Götz M, Kennedy P, Jung B, Zeman F, et al.: Biomarker-guided intervention to prevent acute kidney injury after major surgery: The prospective randomized BigpAK study. Ann Surg 267: 10131020, 2018 10.1097/SLA.0000000000002485PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 158

    Engelman DT, Crisafi C, Germain M, Greco B, Nathanson BH, Engelman RM, et al.: Using urinary biomarkers to reduce acute kidney injury following cardiac surgery. J Thorac Cardiovasc Surg 160: 12351246.e2, 2020 10.1016/j.jtcvs.2019.10.034PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 159

    McDonald JS, McDonald RJ, Williamson EE, Kallmes DF, Kashani K: Post-contrast acute kidney injury in intensive care unit patients: A propensity score-adjusted study. Intensive Care Med 43: 774784, 2017 10.1007/s00134-017-4699-yPubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 160

    Aycock RD, Westafer LM, Boxen JL, Majlesi N, Schoenfeld EM, Bannuru RR: Acute kidney injury after computed tomography: A meta-analysis. Ann Emerg Med 71: 4453.e4, 2018 10.1016/j.annemergmed.2017.06.041PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 161

    Mueller C, Buerkle G, Buettner HJ, Petersen J, Perruchoud AP, Eriksson U, et al.: Prevention of contrast media-associated nephropathy: Randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med 162: 329336, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 162

    Weisbord SD, Palevsky PM: Prevention of contrast-induced nephropathy with volume expansion. Clin J Am Soc Nephrol 3: 273280, 2008 10.2215/CJN.02580607PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 163

    Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, et al.; PRESERVE Trial Group: Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med 378: 603614, 2018 10.1056/NEJMoa1710933PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 164

    Rosner MH: Prevention of contrast-associated acute kidney injury. N Engl J Med 378: 671672, 2018 10.1056/NEJMe1715190PubMed

  • 165

    Michel P, Amione-Guerra J, Sheikh O, Jameson LC, Bansal S, Prasad A: Meta-analysis of intravascular volume expansion strategies to prevent contrast-associated acute kidney injury following invasive angiography. Catheter Cardiovasc Interv 98: 11201132, 2021 10.1002/ccd.29387PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 166

    Saadat-Gilani K, Zarbock A, Meersch M: Perioperative renoprotection: Clinical implications. Anesth Analg 131: 16671678, 2020 10.1213/ANE.0000000000004995PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 167

    Palevsky PM, Liu KD, Brophy PD, Chawla LS, Parikh CR, Thakar CV, et al.: KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kidney Dis 61: 649672, 2013 10.1053/j.ajkd.2013.02.349PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 168

    Crona DJ, Faso A, Nishijima TF, McGraw KA, Galsky MD, Milowsky MI: A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist 22: 609619, 2017 10.1634/theoncologist.2016-0319PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 169

    Cabral BMI, Edding SN, Portocarrero JP, Lerma EV: Rhabdomyolysis. Dis Mon 66: 101015, 2020 10.1016/j.disamonth.2020.101015PubMed

  • 170

    Bosch X, Poch E, Grau JM: Rhabdomyolysis and acute kidney injury. N Engl J Med 361: 6272, 2009 10.1056/NEJMra0801327PubMed

  • 171

    Michelsen J, Cordtz J, Liboriussen L, Behzadi MT, Ibsen M, Damholt MB, et al.: Prevention of rhabdomyolysis-induced acute kidney injury: A DASAIM/DSIT clinical practice guideline. Acta Anaesthesiol Scand 63: 576586, 2019 10.1111/aas.13308PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 172

    Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL; Sepsis Occurrence in Acutely Ill Patients (SOAP) Investigators: A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12: R74, 2008 10.1186/cc6916PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 173

    Bagshaw SM, Brophy PD, Cruz D, Ronco C: Fluid balance as a biomarker: Impact of fluid overload on outcome in critically ill patients with acute kidney injury. Crit Care 12: 169, 2008 10.1186/cc6948PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 174

    Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, et al.; Program to Improve Care in Acute Renal Disease (PICARD) Study Group: Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int 76: 422427, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 175

    Moore PK, Hsu RK, Liu KD: Management of acute kidney injury: Core curriculum 2018. Am J Kidney Dis 72: 136148, 2018 10.1053/j.ajkd.2017.11.021PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 176

    Garzotto F, Ostermann M, Martín-Langerwerf D, Sánchez-Sánchez M, Teng J, Robert R, et al.; DoReMIFA study group: The Dose Response Multicentre Investigation on Fluid Assessment (DoReMIFA) in critically ill patients. Crit Care 20: 196, 2016 10.1186/s13054-016-1355-9PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 177

    Raimundo M, Crichton S, Martin JR, Syed Y, Varrier M, Wyncoll D, et al.: Increased fluid administration after early acute kidney injury is associated with less renal recovery. Shock 44: 431437, 2015 10.1097/SHK.0000000000000453PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 178

    Ostermann M, Straaten HM, Forni LG: Fluid overload and acute kidney injury: Cause or consequence? Crit Care 19: 443, 2015 10.1186/s13054-015-1163-7PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 179

    Glassford NJ, Eastwood GM, Bellomo R: Physiological changes after fluid bolus therapy in sepsis: A systematic review of contemporary data. Crit Care 18: 696, 2014 10.1186/s13054-014-0696-5PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 180

    Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network: Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol 6: 966973, 2011 10.2215/CJN.08781010PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 181

    Libório AB, Barbosa ML, VB, Leite TT: Impact of loop diuretics on critically ill patients with a positive fluid balance. Anaesthesia 75[Suppl 1]: e134e142, 2020 10.1111/anae.14908PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 182

    Gorriz JL, D’Marco L, Pastor-González A, Molina P, Gonzalez-Rico M, Puchades MJ, et al.: Long-term mortality and trajectory of potassium measurements following an episode of acute severe hyperkalemia [published online ahead of print January 28, 2021]. Nephrol Dial Transplant 10.1093/ndt/gfab003PubMed

    • Search Google Scholar
    • Export Citation
  • 183

    Cooper LB, Savarese G, Carrero JJ, Szabo B, Jernberg T, Jonsson Å, et al.: Clinical and research implications of serum versus plasma potassium measurements. Eur J Heart Fail 21: 536537, 2019 10.1002/ejhf.1371PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 184

    Truhlář A, Deakin CD, Soar J, Khalifa GE, Alfonzo A, Bierens JJ, et al.; Cardiac arrest in special circumstances section Collaborators: European Resuscitation Council Guidelines for Resuscitation 2015: Section 4. Cardiac arrest in special circumstances. Resuscitation 95: 148201, 2015 10.1016/j.resuscitation.2015.07.017PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 185

    Hartland AJ, Neary RH: Serum potassium is unreliable as an estimate of in vivo plasma potassium. Clin Chem 45: 10911092, 1999 PubMed

  • 186

    Palmer BF, Carrero JJ, Clegg DJ, Colbert GB, Emmett M, Fishbane S, et al.: Clinical management of hyperkalemia. Mayo Clin Proc 96: 744762, 2021 10.1016/j.mayocp.2020.06.014PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 187

    Liu M, Rafique Z: Acute management of hyperkalemia. Curr Heart Fail Rep 16: 6774, 2019 10.1007/s11897-019-00425-2PubMed

  • 188

    Ho K: A critically swift response: Insulin-stimulated potassium and glucose transport in skeletal muscle. Clin J Am Soc Nephrol 6: 15131516, 2011 10.2215/CJN.04540511PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 189

    Harel Z, Kamel KS: Optimal dose and method of administration of intravenous insulin in the management of emergency hyperkalemia: A systematic review. PLoS One 11: e0154963, 2016 10.1371/journal.pone.0154963PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 190

    McNicholas BA, Pham MH, Carli K, Chen CH, Colobong-Smith N, Anderson AE, et al.: Treatment of hyperkalemia with a low-dose insulin protocol is effective and results in reduced hypoglycemia. Kidney Int Rep 3: 328336, 2017 10.1016/j.ekir.2017.10.009PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 191

    Lindner G, Burdmann EA, Clase CM, Hemmelgarn BR, Herzog CA, Małyszko J, et al.: Acute hyperkalemia in the emergency department: A summary from a Kidney Disease: Improving Global Outcomes conference. Eur J Emerg Med 27: 329337, 2020 10.1097/MEJ.0000000000000691PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 192

    Wang CH, Huang CH, Chang WT, Tsai MS, Yu PH, Wu YW, et al.: The effects of calcium and sodium bicarbonate on severe hyperkalaemia during cardiopulmonary resuscitation: A retrospective cohort study of adult in-hospital cardiac arrest. Resuscitation 98: 105111, 2016 10.1016/j.resuscitation.2015.09.384PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 193

    McGowan CE, Saha S, Chu G, Resnick MB, Moss SF: Intestinal necrosis due to sodium polystyrene sulfonate (Kayexalate) in sorbitol. South Med J 102: 493497