Metabolic Alkalosis
By:
Namrata KrishnanYale School of Medicine, New Haven, Connecticut, and
Veterans Affairs Medical Center, West Haven, Connecticut

Search for other papers by Namrata Krishnan in
Current site
Google Scholar
PubMed
Close
and
Robert Jay AlpernYale School of Medicine, New Haven, Connecticut

Search for other papers by Robert Jay Alpern in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1

    Swan RC, Axelrod DR, Seip M, Pitts RF: Distribution of sodium bicarbonate infused into nephrectomized dogs. J Clin Invest 34: 17951801, 1955 PubMed

  • 2

    Adrogué HJ, Brensilver J, Cohen JJ, Madias NE: Influence of steady-state alterations in acid-base equilibrium on the fate of administered bicarbonate in the dog. J Clin Invest 71: 867883, 1983 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3

    Singer RB, Clark JK, Barker ES, Crosley AP Jr, Elkinton JR: The acute effects in man of rapid intravenous infusion of hypertonic sodium bicarbonate solution. I. Changes in acid-base balance and distribution of the excess buffer base. Medicine (Baltimore) 34: 5195, 1955 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Pitts RF, Lotspeich WD: Bicarbonate and the renal regulation of acid base balance. Am J Physiol 147: 138154, 1946 PubMed

  • 5

    Alpern RJ, Cogan MG, Rector FC Jr: Effect of luminal bicarbonate concentration on proximal acidification in the rat. Am J Physiol 243: F53F59, 1982 PubMed

    • Search Google Scholar
    • Export Citation
  • 6

    Alpern RJ, Cogan MG, Rector FC Jr: Effects of extracellular fluid volume and plasma bicarbonate concentration on proximal acidification in the rat. J Clin Invest 71:736746, 1983 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Giebisch G, Malnic G, De Mello GB, De Mello Aires M: Kinetics of luminal acidification in cortical tubules of the rat kidney. J Physiol 267: 571599, 1977 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Wesson DE: Dietary HCO3 reduces distal tubule acidification by increasing cellular HCO3 secretion. Am J Physiol 271: F132F142, 1996 PubMed

    • Search Google Scholar
    • Export Citation
  • 9

    Wall SM, Verlander JW, Romero CA: The renal physiology of pendrin-positive intercalated cells. Physiol Rev 100: 11191147, 2020 PubMed

  • 10

    Emmett M: Metabolic alkalosis: a brief pathophysiologic review. Clin J Am Soc Nephrol 15: 18481856, 2020 PubMed

  • 11

    Seldin DW, Rector FC Jr: Symposium on acid-base homeostasis: the generation and maintenance of metabolic alkalosis. Kidney Int 1: 306321, 1972 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Kassirer JP, Schwartz WB: The response of normal man to selective depletion of hydrochloric acid: factors in the genesis of persistent gastric alkalosis. Am J Med 40: 1018, 1966 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Kassirer JP, Schwartz WB: Correction of metabolic alkalosis in man without repair of potassium deficiency: a re-evaluation of the role of potassium. Am J Med 40: 1926, 1966 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Kurtzman NA, White MG, Rogers PW: The effect of potassium and extracellular volume on renal bicarbonate reabsorption. Metabolism 22: 481492, 1973 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Moe OW, Tejedor A, Levi M, Seldin DW, Preisig PA, Alpern RJ: Dietary NaCl modulates Na(+)-H+ antiporter activity in renal cortical apical membrane vesicles. Am J Physiol 260: F130F137, 1991 PubMed

    • Search Google Scholar
    • Export Citation
  • 16

    Liu FY, Cogan MG: Angiotensin II stimulates early proximal bicarbonate absorption in the rat by decreasing cyclic adenosine monophosphate. J Clin Invest 84: 8391, 1989 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Levine DZ, Iacovitti M, Buckman S, Harrison V: In vivo modulation of rat distal tubule net HCO3 flux by VIP, isoproterenol, angiotensin II, and ADH. Am J Physiol 266: F878F883, 1994 PubMed

    • Search Google Scholar
    • Export Citation
  • 18

    Levine DZ, Vandorpe D, Iacovitti M: Luminal chloride modulates rat distal tubule bidirectional bicarbonate flux in vivo. J Clin Invest 85: 17931798, 1990 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Wesson DE, Dolson GM: Enhanced HCO3 secretion by distal tubule contributes to NaCl-induced correction of chronic alkalosis. Am J Physiol 264: F899F906, 1993 PubMed

    • Search Google Scholar
    • Export Citation
  • 20

    Cohen JJ: Correction of metabolic alkalosis by the kidney after isometric expansion of extracellular fluid. J Clin Invest 47: 11811192, 1968 PubMed

  • 21

    Galla JH, Bonduris DN, Luke RG: Correction of acute chloride-depletion alkalosis in the rat without volume expansion. Am J Physiol 244: F217F221, 1983 PubMed

    • Search Google Scholar
    • Export Citation
  • 22

    Garella S, Cohen JJ, Northrup TE: Chloride-depletion metabolic alkalosis induces ECF volume depletion via internal fluid shifts in nephrectomized dogs. Eur J Clin Invest 21: 273279, 1991 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Kunau RT Jr, Frick A, Rector FC Jr, Seldin DW: Micropuncture study of the proximal tubular factors responsible for the maintenance of alkalosis during potassium deficiency in the rat. Clin Sci 34: 223231, 1968 PubMed

    • Search Google Scholar
    • Export Citation
  • 24

    Capasso G, Kinne R, Malnic G, Giebisch G: Renal bicarbonate reabsorption in the rat. I. Effects of hypokalemia and carbonic anhydrase. J Clin Invest 78: 15581567, 1986 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Boyd JE, Palmore WP, Mulrow PJ: Role of potassium in the control of aldosterone secretion in the rat. Endocrinology 88: 556565, 1971 PubMed

  • 26

    Hulter HN, Sigala JF, Sebastian A: K+ deprivation potentiates the renal alkalosis-producing effect of mineralocorticoid. Am J Physiol 235: F298F309, 1978 PubMed

    • Search Google Scholar
    • Export Citation
  • 27

    Kassirer JP, London AM, Goldman DM, Schwartz WB: On the pathogenesis of metabolic alkalosis in hyperaldosteronism. Am J Med 49: 306315, 1970 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Seldin DW, Welt LG, Cort JH: The role of sodium salts and adrenal steroids in the production of hypokalemic alkalosis. Yale J Biol Med 29: 229247, 1956 PubMed

    • Search Google Scholar
    • Export Citation
  • 29

    Relman AS, Schwartz WB: The effect of DOCA on electrolyte balance in normal man and its relation to sodium chloride intake. Yale J Biol Med 24: 540558, 1952 PubMed

    • Search Google Scholar
    • Export Citation
  • 30

    Harrington JT, Hulter HN, Cohen JJ, Madias NE: Mineralocorticoid-stimulated renal acidification: the critical role of dietary sodium. Kidney Int 30: 4348, 1986 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Stinebaugh B, Miller RB, Relman AS: The influence of non-reabsorbable anions on acid excretion. Clin Sci 36: 5365, 1969 PubMed

  • 32

    Berg P, Svendsen SL, Sorensen MV, Larsen CK, Andersen JF, Jensen-Fangel S, et al.: Impaired renal HCO3 excretion in cystic fibrosis. J Am Soc Nephrol 31: 17111727, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Cooke RE, Segar WE, Cheek DB, Coville FE, Darrow DC: The extrarenal correction of alkalosis associated with potassium deficiency. J Clin Invest 31: 798805, 1952 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Garella S, Chang BS, Kahn SI: Dilution acidosis and contraction alkalosis: review of a concept. Kidney Int 8: 279283, 1975 PubMed

  • 35

    Seldin DW, Giebisch GH: Seldin and Giebisch's The Kidney: Physiology and Pathophysiology, 5th Ed., edited by Alpern RJ, Caplan MJ, Moe OW, San Diego, Elsevier Science & Technology; 2013.

    • Search Google Scholar
    • Export Citation
  • 36

    Schweinfest CW, Henderson KW, Suster S, Kondoh N, Papas TS: Identification of a colon mucosa gene that is down-regulated in colon adenomas and adenocarcinomas. Proc Natl Acad Sci U S A 90: 41664170, 1993 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37

    Pilch YH, Kiser WS, Bartter FC: A case of villous adenoma of the rectum with hyperaldosteronism and unusual renal manifestations. Am J Med 39: 483491, 1965 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Clapp JR, Rector FC Jr, Seldin DW: Effect of unreabsorbed anions on proximal and distal transtubular potentials in rats. Am J Physiol 202: 781786, 1962 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    Bartter FC, Pronove P, Gill JR, MacCardle RC: Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis: a new syndrome. Am J Med 33: 811828, 1962 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40

    Hebert SC: Bartter syndrome. Curr Opin Nephrol Hypertens 12: 527532, 2003 PubMed

  • 41

    Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, et al.: Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet 12: 2430, 1996 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42

    Gitelman HJ, Graham JB, Welt LG: A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians 79: 221235, 1966 PubMed

    • Search Google Scholar
    • Export Citation
  • 43

    Bettinelli A, Bianchetti MG, Girardin E, Caringella A, Cecconi M, Appiani AC, et al.: Use of calcium excretion values to distinguish two forms of primary renal tubular hypokalemic alkalosis: Bartter and Gitelman syndromes. J Pediatr 120: 3843, 1992 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    Francisco LL, Sawin LL, Dibona GF: Mechanism of negative potassium balance in the magnesium-deficient rat. Proc Soc Exp Biol Med 168: 382388, 1981 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45

    Shils ME: Experimental human magnesium depletion. Medicine (Baltimore) 48: 6185, 1969 PubMed

  • 46

    Wang WH, Lu M, Hebert SC: Cytochrome P-450 metabolites mediate extracellular Ca(2+)-induced inhibition of apical K+ channels in the TAL. Am J Physiol 271: C103C111, 1996 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47

    Bunchman TE, Sinaiko AR: Renovascular hypertension presenting with hypokalemic metabolic alkalosis. Pediatr Nephrol 4: 169170, 1990 PubMed

  • 48

    Laragh JH, Ulick S, Januszewicz V, Deming QB, Kelly WG, Lieberman S: Aldosterone secretion and primary and malignant hypertension. J Clin Invest 39: 10911106, 1960 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49

    Conn JW, Cohen EL, Lucas CP, McDonald WJ, Mayor GH, Blough WM Jr, et al.: Primary reninism: hypertension, hyperreninemia, and secondary aldosteronism due to renin-producing juxtaglomerular cell tumors. Arch Intern Med 130: 682696, 1972 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50

    Weinberger MH: Primary aldosteronism: diagnosis and differentiation of subtypes. Ann Intern Med 100: 300302, 1984 PubMed

  • 51

    Sutherland DJ, Ruse JL, Laidlaw JC: Hypertension, increased aldosterone secretion and low plasma renin activity relieved by dexamethasone. Can Med Assoc J 95: 11091119, 1966 PubMed

    • Search Google Scholar
    • Export Citation
  • 52

    Alterman SL, Dominguez C, Lopez-Gomez A, Lieber AL: Primary adrenocortical carcinoma causing aldosteronism. Cancer 24: 602609, 1969 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53

    Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al.: A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 355: 262265, 1992 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54

    Christy NP, Laragh JH: Pathogenesis of hypokalemic alkalosis in Cushing’s syndrome. N Engl J Med 265: 10831088, 1961 PubMed

  • 55

    Gwinup G, Gantt CL, Hamwi GJ: The production of hypokalemic alkalosis with hydrocortisone in subjects with adrenal insufficiency. Metabolism 13: 831836, 1964 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56

    Schambelan M, Slaton PE Jr, Biglieri EG: Mineralocorticoid production in hyperadrenocorticism: role in pathogenesis of hypokalemic alkalosis. Am J Med 51: 299303, 1971 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57

    Louis LH, Conn JW: Preparation of glycyrrhizinic acid, the electrolyte-active principle of licorice: its effects upon metabolism and upon pituitary-adrenal function in man. J Lab Clin Med 47: 2028, 1956 PubMed

    • Search Google Scholar
    • Export Citation
  • 58

    Mune T, Rogerson FM, Nikkilä H, Agarwal AK, White PC: Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet 10: 394399, 1995 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59

    Wilson RC, Krozowski ZS, Li K, Obeyesekere VR, Razzaghy-Azar M, Harbison MD, et al.: A mutation in the HSD11B2 gene in a family with apparent mineralocorticoid excess. J Clin Endocrinol Metab 80: 22632266, 1995 PubMed

    • Search Google Scholar
    • Export Citation
  • 60

    Biglieri EG, Stockigt JR, Schambelan M: Adrenal mineralocorticoids causing hypertension. Am J Med 52: 623632, 1972 PubMed

  • 61

    Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, et al.: Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 289: 119123, 2000 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62

    Liddle GW, Bledsoe T, Coppage Jr, WS. A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Physicians 76: 199213, 1963

    • Search Google Scholar
    • Export Citation
  • 63

    Rodriguez JA, Biglieri EG, Schambelan M: Pseudohyperaldosteronism with renal tubular resistance to mineralocorticoid hormones. Trans Assoc Am Physicians 94: 172182, 1981 PubMed

    • Search Google Scholar
    • Export Citation
  • 64

    Wang C, Chan TK, Yeung RT, Coghlan JP, Scoggins BA, Stockigt JR: The effect of triamterene and sodium intake on renin, aldosterone, and erythrocyte sodium transport in Liddle’s syndrome. J Clin Endocrinol Metab 52: 10271032, 1981 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65

    Galla JH: Metabolic alkalosis. J Am Soc Nephrol 11: 369375, 2000 PubMed

  • 66

    Goldring RM, Cannon PJ, Heinemann HO, Fishman AP: Respiratory adjustment to chronic metabolic alkalosis in man. J Clin Invest 47: 188202, 1968 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67

    Palmer BF, Alpern RJ: Metabolic alkalosis. J Am Soc Nephrol 8: 14621469, 1997 PubMed

  • 68

    Madias NE: Renal acidification responses to respiratory acid-base disorders. J Nephrol 23[Suppl 16]: S85S91, 2010 PubMed

  • 69

    Schwartz WB, Relman AS: A critique of the parameters used in the evaluation of acid-base disorders: “whole-blood buffer base” and “standard bicarbonate” compared with blood pH and plasma bicarbonate concentration. N Engl J Med 268: 13821388, 1963 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70

    Berend K: Diagnostic use of base excess in acid-base disorders. N Engl J Med 378: 14191428, 2018 PubMed

  • 71

    Byrne AL, Bennett M, Chatterji R, Symons R, Pace NL, Thomas PS: Peripheral venous and arterial blood gas analysis in adults: are they comparable? A systematic review and meta-analysis. Respirology 19: 168175, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72

    Treger R, Pirouz S, Kamangar N, Corry D: Agreement between central venous and arterial blood gas measurements in the intensive care unit. Clin J Am Soc Nephrol 5: 390394, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73

    Schrauben SJ, Negoianu D, Costa C, Cohen RM, Goldfarb S, Fuchs BD, et al.: Accuracy of acid-base diagnoses using the central venous blood gas in the medical intensive care unit. Nephron 139: 293298, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74

    Ardhanari S, Kannuswamy R, Chaudhary K, Lockette W, Whaley-Connell A: Mineralocorticoid and apparent mineralocorticoid syndromes of secondary hypertension. Adv Chronic Kidney Dis 22: 185195, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75

    Yi JH, Han SW, Song JS, Kim HJ: Metabolic alkalosis from unsuspected ingestion: use of urine pH and anion gap. Am J Kidney Dis 59: 577581, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76

    Palmer BF: A physiologic-based approach to the evaluation of a patient with hypokalemia. Am J Kidney Dis 56: 11841190, 2010 PubMed

  • 77

    Tobias JD: Metabolic alkalosis in the pediatric patient: treatment options in the pediatric ICU or pediatric cardiothoracic ICU setting. World J Pediatr Congenit Heart Surg 11: 776782, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78

    Cuthbert JJ, Bhandari S, Clark AL: Hypochloraemia in patients with heart failure: causes and consequences. Cardiol Ther 9: 333347, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79

    Kreü S, Jazrawi A, Miller J, Baigi A, Chew M: Alkalosis in critically ill patients with severe sepsis and septic shock. PLoS One 12: e0168563, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80

    Peixoto AJ, Alpern RJ: Treatment of severe metabolic alkalosis in a patient with congestive heart failure. Am J Kidney Dis 61: 822827, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81

    Libório AB, Noritomi DT, Leite TT, de Melo Bezerra CT, de Faria ER, Kellum JA: Increased serum bicarbonate in critically ill patients: a retrospective analysis. Intensive Care Med 41: 479486, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82

    Webster NR, Kulkarni V: Metabolic alkalosis in the critically ill. Crit Rev Clin Lab Sci 36: 497510, 1999 PubMed

  • 83

    Anderson LE, Henrich WL: Alkalemia-associated morbidity and mortality in medical and surgical patients. South Med J 80: 729733, 1987 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84

    Banga A, Khilnani GC: Post-hypercapnic alkalosis is associated with ventilator dependence and increased ICU stay. COPD 6: 437440, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85

    Oppersma E, Doorduin J, van der Hoeven JG, Veltink PH, van Hees HWH, Heunks LMA: The effect of metabolic alkalosis on the ventilatory response in healthy subjects. Respir Physiol Neurobiol 249: 4753, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86

    Huber L, Gennari FJ: Severe metabolic alkalosis in a hemodialysis patient. Am J Kidney Dis 58: 144149, 2011 PubMed

  • 87

    Sigwalt F, Bouteleux A, Dambricourt F, Asselborn T, Moriceau F, Rimmelé T: Clinical complications of continuous renal replacement therapy. Contrib Nephrol 194: 109117, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88

    Heming N, Urien S, Faisy C: Acetazolamide: a second wind for a respiratory stimulant in the intensive care unit? Crit Care 16: 318, 2012 PubMed

  • 89

    Preisig PA, Toto RD, Alpern RJ: Carbonic anhydrase inhibitors. Ren Physiol 10: 136159, 1987 PubMed

  • 90

    Adamson R, Swenson ER: Acetazolamide use in severe chronic obstructive pulmonary disease: pros and cons. Ann Am Thorac Soc 14: 10861093, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 91

    Guffey JD, Haas CE, Crowley A, Connor KA, Kaufman DC: Hydrochloric acid infusion for the treatment of metabolic alkalosis in surgical intensive care unit patients. Ann Pharmacother 52: 522526, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92

    Buchanan IB, Campbell BT, Peck MD, Cairns BA: Chest wall necrosis and death secondary to hydrochloric acid infusion for metabolic alkalosis. South Med J 98: 822824, 2005 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93

    Knutsen OH: New method for administration of hydrochloric acid in metabolic alkalosis. Lancet 1: 953956, 1983 PubMed

  • 94

    Finkle D, Dean RE: Buffered hydrochloric acid: a modern method of treating metabolic alkalosis. Am Surg 47: 103106, 1981 PubMed

  • 95

    Ryuge A, Matsui K, Shibagaki Y: Hyponatremic chloride-depletion metabolic alkalosis successfully treated with high cation-gap amino acid. Intern Med 55: 17651767, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96

    Sierra CM, Hernandez EA, Parbuoni KA: Use of arginine hydrochloride in the treatment of metabolic alkalosis or hypochloremia in pediatric patients. J Pediatr Pharmacol Ther 23: 111118, 2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 97

    Bushinsky DA, Gennari FJ: Life-threatening hyperkalemia induced by arginine. Ann Intern Med 89: 632634, 1978 PubMed

  • 98

    Wongboonsin J, Thongprayoon C, Bathini T, Ungprasert P, Aeddula NR, Mao MA, et al.: Acetazolamide therapy in patients with heart failure: a meta-analysis. J Clin Med 8: E349, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99

    Mazaheri M, Assadi F, Sadeghi-Bojd S: Adjunctive acetazolamide therapy for the treatment of Bartter syndrome. Int Urol Nephrol 52: 121128, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100

    Faisy C, Meziani F, Planquette B, Clavel M, Gacouin A, Bornstain C, et al.; DIABOLO Investigators: Effect of acetazolamide vs placebo on duration of invasive mechanical ventilation among patients with chronic obstructive pulmonary disease: a randomized clinical trial. JAMA 315: 480488, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101

    Tanios BY, Omran MO, Noujeim C, Lotfi T, Mallat SS, Bou-Khalil PK, et al.: Carbonic anhydrase inhibitors in patients with respiratory failure and metabolic alkalosis: a systematic review and meta-analysis of randomized controlled trials. Crit Care 22: 275, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 119 119 10
Full Text Views 219 219 19
PDF Downloads 281 281 18