Metabolic Alkalosis
View More View Less
  • 1 Yale School of Medicine, New Haven, Connecticut, and
  • | 2 Veterans Affairs Medical Center, West Haven, Connecticut
  • | 3 Yale School of Medicine, New Haven, Connecticut
  • 1

    Swan RC, Axelrod DR, Seip M, Pitts RF: Distribution of sodium bicarbonate infused into nephrectomized dogs. J Clin Invest 34: 17951801, 1955 PubMed

  • 2

    Adrogué HJ, Brensilver J, Cohen JJ, Madias NE: Influence of steady-state alterations in acid-base equilibrium on the fate of administered bicarbonate in the dog. J Clin Invest 71: 867883, 1983 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3

    Singer RB, Clark JK, Barker ES, Crosley AP Jr, Elkinton JR: The acute effects in man of rapid intravenous infusion of hypertonic sodium bicarbonate solution. I. Changes in acid-base balance and distribution of the excess buffer base. Medicine (Baltimore) 34: 5195, 1955 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Pitts RF, Lotspeich WD: Bicarbonate and the renal regulation of acid base balance. Am J Physiol 147: 138154, 1946 PubMed

  • 5

    Alpern RJ, Cogan MG, Rector FC Jr: Effect of luminal bicarbonate concentration on proximal acidification in the rat. Am J Physiol 243: F53F59, 1982 PubMed

    • Search Google Scholar
    • Export Citation
  • 6

    Alpern RJ, Cogan MG, Rector FC Jr: Effects of extracellular fluid volume and plasma bicarbonate concentration on proximal acidification in the rat. J Clin Invest 71:736746, 1983 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Giebisch G, Malnic G, De Mello GB, De Mello Aires M: Kinetics of luminal acidification in cortical tubules of the rat kidney. J Physiol 267: 571599, 1977 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Wesson DE: Dietary HCO3 reduces distal tubule acidification by increasing cellular HCO3 secretion. Am J Physiol 271: F132F142, 1996 PubMed

    • Search Google Scholar
    • Export Citation
  • 9

    Wall SM, Verlander JW, Romero CA: The renal physiology of pendrin-positive intercalated cells. Physiol Rev 100: 11191147, 2020 PubMed

  • 10

    Emmett M: Metabolic alkalosis: a brief pathophysiologic review. Clin J Am Soc Nephrol 15: 18481856, 2020 PubMed

  • 11

    Seldin DW, Rector FC Jr: Symposium on acid-base homeostasis: the generation and maintenance of metabolic alkalosis. Kidney Int 1: 306321, 1972 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Kassirer JP, Schwartz WB: The response of normal man to selective depletion of hydrochloric acid: factors in the genesis of persistent gastric alkalosis. Am J Med 40: 1018, 1966 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Kassirer JP, Schwartz WB: Correction of metabolic alkalosis in man without repair of potassium deficiency: a re-evaluation of the role of potassium. Am J Med 40: 1926, 1966 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Kurtzman NA, White MG, Rogers PW: The effect of potassium and extracellular volume on renal bicarbonate reabsorption. Metabolism 22: 481492, 1973 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Moe OW, Tejedor A, Levi M, Seldin DW, Preisig PA, Alpern RJ: Dietary NaCl modulates Na(+)-H+ antiporter activity in renal cortical apical membrane vesicles. Am J Physiol 260: F130F137, 1991 PubMed

    • Search Google Scholar
    • Export Citation
  • 16

    Liu FY, Cogan MG: Angiotensin II stimulates early proximal bicarbonate absorption in the rat by decreasing cyclic adenosine monophosphate. J Clin Invest 84: 8391, 1989 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Levine DZ, Iacovitti M, Buckman S, Harrison V: In vivo modulation of rat distal tubule net HCO3 flux by VIP, isoproterenol, angiotensin II, and ADH. Am J Physiol 266: F878F883, 1994 PubMed

    • Search Google Scholar
    • Export Citation
  • 18

    Levine DZ, Vandorpe D, Iacovitti M: Luminal chloride modulates rat distal tubule bidirectional bicarbonate flux in vivo. J Clin Invest 85: 17931798, 1990 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Wesson DE, Dolson GM: Enhanced HCO3 secretion by distal tubule contributes to NaCl-induced correction of chronic alkalosis. Am J Physiol 264: F899F906, 1993 PubMed

    • Search Google Scholar
    • Export Citation
  • 20

    Cohen JJ: Correction of metabolic alkalosis by the kidney after isometric expansion of extracellular fluid. J Clin Invest 47: 11811192, 1968 PubMed

  • 21

    Galla JH, Bonduris DN, Luke RG: Correction of acute chloride-depletion alkalosis in the rat without volume expansion. Am J Physiol 244: F217F221, 1983 PubMed

    • Search Google Scholar
    • Export Citation
  • 22

    Garella S, Cohen JJ, Northrup TE: Chloride-depletion metabolic alkalosis induces ECF volume depletion via internal fluid shifts in nephrectomized dogs. Eur J Clin Invest 21: 273279, 1991 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Kunau RT Jr, Frick A, Rector FC Jr, Seldin DW: Micropuncture study of the proximal tubular factors responsible for the maintenance of alkalosis during potassium deficiency in the rat. Clin Sci 34: 223231, 1968 PubMed

    • Search Google Scholar
    • Export Citation
  • 24

    Capasso G, Kinne R, Malnic G, Giebisch G: Renal bicarbonate reabsorption in the rat. I. Effects of hypokalemia and carbonic anhydrase. J Clin Invest 78: 15581567, 1986 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Boyd JE, Palmore WP, Mulrow PJ: Role of potassium in the control of aldosterone secretion in the rat. Endocrinology 88: 556565, 1971 PubMed

  • 26

    Hulter HN, Sigala JF, Sebastian A: K+ deprivation potentiates the renal alkalosis-producing effect of mineralocorticoid. Am J Physiol 235: F298F309, 1978 PubMed

    • Search Google Scholar
    • Export Citation
  • 27

    Kassirer JP, London AM, Goldman DM, Schwartz WB: On the pathogenesis of metabolic alkalosis in hyperaldosteronism. Am J Med 49: 306315, 1970 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Seldin DW, Welt LG, Cort JH: The role of sodium salts and adrenal steroids in the production of hypokalemic alkalosis. Yale J Biol Med 29: 229247, 1956 PubMed

    • Search Google Scholar
    • Export Citation
  • 29

    Relman AS, Schwartz WB: The effect of DOCA on electrolyte balance in normal man and its relation to sodium chloride intake. Yale J Biol Med 24: 540558, 1952 PubMed

    • Search Google Scholar
    • Export Citation
  • 30

    Harrington JT, Hulter HN, Cohen JJ, Madias NE: Mineralocorticoid-stimulated renal acidification: the critical role of dietary sodium. Kidney Int 30: 4348, 1986 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Stinebaugh B, Miller RB, Relman AS: The influence of non-reabsorbable anions on acid excretion. Clin Sci 36: 5365, 1969 PubMed

  • 32

    Berg P, Svendsen SL, Sorensen MV, Larsen CK, Andersen JF, Jensen-Fangel S, et al.: Impaired renal HCO3 excretion in cystic fibrosis. J Am Soc Nephrol 31: 17111727, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Cooke RE, Segar WE, Cheek DB, Coville FE, Darrow DC: The extrarenal correction of alkalosis associated with potassium deficiency. J Clin Invest 31: 798805, 1952 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Garella S, Chang BS, Kahn SI: Dilution acidosis and contraction alkalosis: review of a concept. Kidney Int 8: 279283, 1975 PubMed

  • 35

    Seldin DW, Giebisch GH: Seldin and Giebisch's The Kidney: Physiology and Pathophysiology, 5th Ed., edited by Alpern RJ, Caplan MJ, Moe OW, San Diego, Elsevier Science & Technology; 2013.

    • Search Google Scholar
    • Export Citation
  • 36

    Schweinfest CW, Henderson KW, Suster S, Kondoh N, Papas TS: Identification of a colon mucosa gene that is down-regulated in colon adenomas and adenocarcinomas. Proc Natl Acad Sci U S A 90: 41664170, 1993 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37

    Pilch YH, Kiser WS, Bartter FC: A case of villous adenoma of the rectum with hyperaldosteronism and unusual renal manifestations. Am J Med 39: 483491, 1965 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Clapp JR, Rector FC Jr, Seldin DW: Effect of unreabsorbed anions on proximal and distal transtubular potentials in rats. Am J Physiol 202: 781786, 1962 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    Bartter FC, Pronove P, Gill JR, MacCardle RC: Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis: a new syndrome. Am J Med 33: 811828, 1962 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40

    Hebert SC: Bartter syndrome. Curr Opin Nephrol Hypertens 12: 527532, 2003 PubMed

  • 41

    Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, et al.: Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet 12: 2430, 1996 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42

    Gitelman HJ, Graham JB, Welt LG: A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians 79: 221235, 1966 PubMed

    • Search Google Scholar
    • Export Citation
  • 43

    Bettinelli A, Bianchetti MG, Girardin E, Caringella A, Cecconi M, Appiani AC, et al.: Use of calcium excretion values to distinguish two forms of primary renal tubular hypokalemic alkalosis: Bartter and Gitelman syndromes. J Pediatr 120: 3843, 1992 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    Francisco LL, Sawin LL, Dibona GF: Mechanism of negative potassium balance in the magnesium-deficient rat. Proc Soc Exp Biol Med 168: 382388, 1981 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45

    Shils ME: Experimental human magnesium depletion. Medicine (Baltimore) 48: 6185, 1969 PubMed

  • 46

    Wang WH, Lu M, Hebert SC: Cytochrome P-450 metabolites mediate extracellular Ca(2+)-induced inhibition of apical K+ channels in the TAL. Am J Physiol 271: C103C111, 1996 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47

    Bunchman TE, Sinaiko AR: Renovascular hypertension presenting with hypokalemic metabolic alkalosis. Pediatr Nephrol 4: 169170, 1990 PubMed

  • 48

    Laragh JH, Ulick S, Januszewicz V, Deming QB, Kelly WG, Lieberman S: Aldosterone secretion and primary and malignant hypertension. J Clin Invest 39: 10911106, 1960 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49

    Conn JW, Cohen EL, Lucas CP, McDonald WJ, Mayor GH, Blough WM Jr, et al.: Primary reninism: hypertension, hyperreninemia, and secondary aldosteronism due to renin-producing juxtaglomerular cell tumors. Arch Intern Med 130: 682696, 1972 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50

    Weinberger MH: Primary aldosteronism: diagnosis and differentiation of subtypes. Ann Intern Med 100: 300302, 1984 PubMed

  • 51

    Sutherland DJ, Ruse JL, Laidlaw JC: Hypertension, increased aldosterone secretion and low plasma renin activity relieved by dexamethasone. Can Med Assoc J 95: 11091119, 1966 PubMed

    • Search Google Scholar
    • Export Citation
  • 52

    Alterman SL, Dominguez C, Lopez-Gomez A, Lieber AL: Primary adrenocortical carcinoma causing aldosteronism. Cancer 24: 602609, 1969 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53

    Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al.: A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 355: 262265, 1992 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54

    Christy NP, Laragh JH: Pathogenesis of hypokalemic alkalosis in Cushing’s syndrome. N Engl J Med 265: 10831088, 1961 PubMed

  • 55

    Gwinup G, Gantt CL, Hamwi GJ: The production of hypokalemic alkalosis with hydrocortisone in subjects with adrenal insufficiency. Metabolism 13: 831836, 1964 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56

    Schambelan M, Slaton PE Jr, Biglieri EG: Mineralocorticoid production in hyperadrenocorticism: role in pathogenesis of hypokalemic alkalosis. Am J Med 51: 299303, 1971 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57

    Louis LH, Conn JW: Preparation of glycyrrhizinic acid, the electrolyte-active principle of licorice: its effects upon metabolism and upon pituitary-adrenal function in man. J Lab Clin Med 47: 2028, 1956 PubMed

    • Search Google Scholar
    • Export Citation
  • 58

    Mune T, Rogerson FM, Nikkilä H, Agarwal AK, White PC: Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet 10: 394399, 1995 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59

    Wilson RC, Krozowski ZS, Li K, Obeyesekere VR, Razzaghy-Azar M, Harbison MD, et al.: A mutation in the HSD11B2 gene in a family with apparent mineralocorticoid excess. J Clin Endocrinol Metab 80: 22632266, 1995 PubMed

    • Search Google Scholar
    • Export Citation
  • 60

    Biglieri EG, Stockigt JR, Schambelan M: Adrenal mineralocorticoids causing hypertension. Am J Med 52: 623632, 1972 PubMed

  • 61

    Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, et al.: Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 289: 119123, 2000 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62

    Liddle GW, Bledsoe T, Coppage Jr, WS. A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Physicians 76: 199213, 1963

    • Search Google Scholar
    • Export Citation
  • 63

    Rodriguez JA, Biglieri EG, Schambelan M: Pseudohyperaldosteronism with renal tubular resistance to mineralocorticoid hormones. Trans Assoc Am Physicians 94: 172182, 1981 PubMed

    • Search Google Scholar
    • Export Citation
  • 64

    Wang C, Chan TK, Yeung RT, Coghlan JP, Scoggins BA, Stockigt JR: The effect of triamterene and sodium intake on renin, aldosterone, and erythrocyte sodium transport in Liddle’s syndrome. J Clin Endocrinol Metab 52: 10271032, 1981 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65

    Galla JH: Metabolic alkalosis. J Am Soc Nephrol 11: 369375, 2000 PubMed

  • 66

    Goldring RM, Cannon PJ, Heinemann HO, Fishman AP: Respiratory adjustment to chronic metabolic alkalosis in man. J Clin Invest 47: 188202, 1968 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67

    Palmer BF, Alpern RJ: Metabolic alkalosis. J Am Soc Nephrol 8: 14621469, 1997 PubMed

  • 68

    Madias NE: Renal acidification responses to respiratory acid-base disorders. J Nephrol 23[Suppl 16]: S85S91, 2010 PubMed

  • 69

    Schwartz WB, Relman AS: A critique of the parameters used in the evaluation of acid-base disorders: “whole-blood buffer base” and “standard bicarbonate” compared with blood pH and plasma bicarbonate concentration. N Engl J Med 268: 13821388, 1963 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70

    Berend K: Diagnostic use of base excess in acid-base disorders. N Engl J Med 378: 14191428, 2018 PubMed

  • 71

    Byrne AL, Bennett M, Chatterji R, Symons R, Pace NL, Thomas PS: Peripheral venous and arterial blood gas analysis in adults: are they comparable? A systematic review and meta-analysis. Respirology 19: 168175, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72

    Treger R, Pirouz S, Kamangar N, Corry D: Agreement between central venous and arterial blood gas measurements in the intensive care unit. Clin J Am Soc Nephrol 5: 390394, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73

    Schrauben SJ, Negoianu D, Costa C, Cohen RM, Goldfarb S, Fuchs BD, et al.: Accuracy of acid-base diagnoses using the central venous blood gas in the medical intensive care unit. Nephron 139: 293298, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74

    Ardhanari S, Kannuswamy R, Chaudhary K, Lockette W, Whaley-Connell A: Mineralocorticoid and apparent mineralocorticoid syndromes of secondary hypertension. Adv Chronic Kidney Dis 22: 185195, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75

    Yi JH, Han SW, Song JS, Kim HJ: Metabolic alkalosis from unsuspected ingestion: use of urine pH and anion gap. Am J Kidney Dis 59: 577581, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76

    Palmer BF: A physiologic-based approach to the evaluation of a patient with hypokalemia. Am J Kidney Dis 56: 11841190, 2010 PubMed

  • 77

    Tobias JD: Metabolic alkalosis in the pediatric patient: treatment options in the pediatric ICU or pediatric cardiothoracic ICU setting. World J Pediatr Congenit Heart Surg 11: 776782, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78

    Cuthbert JJ, Bhandari S, Clark AL: Hypochloraemia in patients with heart failure: causes and consequences. Cardiol Ther 9: 333347, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79

    Kreü S, Jazrawi A, Miller J, Baigi A, Chew M: Alkalosis in critically ill patients with severe sepsis and septic shock. PLoS One 12: e0168563, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80

    Peixoto AJ, Alpern RJ: Treatment of severe metabolic alkalosis in a patient with congestive heart failure. Am J Kidney Dis 61: 822827, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81

    Libório AB, Noritomi DT, Leite TT, de Melo Bezerra CT, de Faria ER, Kellum JA: Increased serum bicarbonate in critically ill patients: a retrospective analysis. Intensive Care Med 41: 479486, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82

    Webster NR, Kulkarni V: Metabolic alkalosis in the critically ill. Crit Rev Clin Lab Sci 36: 497510, 1999 PubMed

  • 83

    Anderson LE, Henrich WL: Alkalemia-associated morbidity and mortality in medical and surgical patients. South Med J 80: 729733, 1987 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84

    Banga A, Khilnani GC: Post-hypercapnic alkalosis is associated with ventilator dependence and increased ICU stay. COPD 6: 437440, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85

    Oppersma E, Doorduin J, van der Hoeven JG, Veltink PH, van Hees HWH, Heunks LMA: The effect of metabolic alkalosis on the ventilatory response in healthy subjects. Respir Physiol Neurobiol 249: 4753, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86

    Huber L, Gennari FJ: Severe metabolic alkalosis in a hemodialysis patient. Am J Kidney Dis 58: 144149, 2011 PubMed

  • 87

    Sigwalt F, Bouteleux A, Dambricourt F, Asselborn T, Moriceau F, Rimmelé T: Clinical complications of continuous renal replacement therapy. Contrib Nephrol 194: 109117, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88

    Heming N, Urien S, Faisy C: Acetazolamide: a second wind for a respiratory stimulant in the intensive care unit? Crit Care 16: 318, 2012 PubMed

  • 89

    Preisig PA, Toto RD, Alpern RJ: Carbonic anhydrase inhibitors. Ren Physiol 10: 136159, 1987 PubMed

  • 90

    Adamson R, Swenson ER: Acetazolamide use in severe chronic obstructive pulmonary disease: pros and cons. Ann Am Thorac Soc 14: 10861093, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 91

    Guffey JD, Haas CE, Crowley A, Connor KA, Kaufman DC: Hydrochloric acid infusion for the treatment of metabolic alkalosis in surgical intensive care unit patients. Ann Pharmacother 52: 522526, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92

    Buchanan IB, Campbell BT, Peck MD, Cairns BA: Chest wall necrosis and death secondary to hydrochloric acid infusion for metabolic alkalosis. South Med J 98: 822824, 2005 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93

    Knutsen OH: New method for administration of hydrochloric acid in metabolic alkalosis. Lancet 1: 953956, 1983 PubMed

  • 94

    Finkle D, Dean RE: Buffered hydrochloric acid: a modern method of treating metabolic alkalosis. Am Surg 47: 103106, 1981 PubMed

  • 95

    Ryuge A, Matsui K, Shibagaki Y: Hyponatremic chloride-depletion metabolic alkalosis successfully treated with high cation-gap amino acid. Intern Med 55: 17651767, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96

    Sierra CM, Hernandez EA, Parbuoni KA: Use of arginine hydrochloride in the treatment of metabolic alkalosis or hypochloremia in pediatric patients. J Pediatr Pharmacol Ther 23: 111118, 2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 97

    Bushinsky DA, Gennari FJ: Life-threatening hyperkalemia induced by arginine. Ann Intern Med 89: 632634, 1978 PubMed

  • 98

    Wongboonsin J, Thongprayoon C, Bathini T, Ungprasert P, Aeddula NR, Mao MA, et al.: Acetazolamide therapy in patients with heart failure: a meta-analysis. J Clin Med 8: E349, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99

    Mazaheri M, Assadi F, Sadeghi-Bojd S: Adjunctive acetazolamide therapy for the treatment of Bartter syndrome. Int Urol Nephrol 52: 121128, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100

    Faisy C, Meziani F, Planquette B, Clavel M, Gacouin A, Bornstain C, et al.; DIABOLO Investigators: Effect of acetazolamide vs placebo on duration of invasive mechanical ventilation among patients with chronic obstructive pulmonary disease: a randomized clinical trial. JAMA 315: 480488, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101

    Tanios BY, Omran MO, Noujeim C, Lotfi T, Mallat SS, Bou-Khalil PK, et al.: Carbonic anhydrase inhibitors in patients with respiratory failure and metabolic alkalosis: a systematic review and meta-analysis of randomized controlled trials. Crit Care 22: 275, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 11 11 11
Full Text Views 42 42 42
PDF Downloads 47 47 47