Pathophysiology, Evaluation, and Treatment of Hyperkalemia
View More View Less
  • 1 Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
  • | 2 Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
  • 1

    Kovesdy CP, Matsushita K, Sang Y, Brunskill NJ, Carrero JJ, Chodick G, Hasegawa T, Heerspink HL, Hirayama A, Landman GWD, Levin A, Nitsch D, Wheeler DC, Coresh J, Hallan SI, Shalev V, Grams ME; CKD Prognosis Consortium: Serum potassium and adverse outcomes across the range of kidney function: A CKD Prognosis Consortium meta-analysis. Eur Heart J 39: 15351542, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    Wang B, Wen D, Li H, Wang-France J, Sansom SC: Net K+ secretion in the thick ascending limb of mice on a low-Na, high-K diet. Kidney Int 92: 864875, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3

    Cuevas CA, Su XT, Wang MX, Terker AS, Lin DH, McCormick JA, Yang CL, Ellison DH, Wang WH: Potassium sensing by renal distal tubules requires Kir4.1. J Am Soc Nephrol 28: 18141825, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang C, Meermeier NP, Siler DA, Park HJ, Fu Y, Cohen DM, Weinstein AM, Wang WH, Yang CL, Ellison DH: Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab 21: 3950, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5

    Todkar A, Picard N, Loffing-Cueni D, Sorensen MV, Mihailova M, Nesterov V, Makhanova N, Korbmacher C, Wagner CA, Loffing J: Mechanisms of renal control of potassium homeostasis in complete aldosterone deficiency. J Am Soc Nephrol 26: 425438, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Terker AS, Yarbrough B, Ferdaus MZ, Lazelle RA, Erspamer KJ, Meermeier NP, Park HJ, McCormick JA, Yang CL, Ellison DH: Direct and indirect mineralocorticoid effects determine distal salt transport. J Am Soc Nephrol 27: 24362445, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Meneton P, Loffing J, Warnock DG: Sodium and potassium handling by the aldosterone-sensitive distal nephron: The pivotal role of the distal and connecting tubule. Am J Physiol Renal Physiol 287: F593F601, 2004 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Codina J, Delmas-Mata JT, DuBose TD Jr: Expression of HKalpha2 protein is increased selectively in renal medulla by chronic hypokalemia. Am J Physiol 275: F433F440, 1998 PubMed

    • Search Google Scholar
    • Export Citation
  • 9

    Blanchard A, Bockenhauer D, Bolignano D, Calò LA, Cosyns E, Devuyst O, Ellison DH, Karet Frankl FE, Knoers NVAM, Konrad M, Lin SH, Vargas-Poussou R: Gitelman syndrome: consensus and guidance from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int 91: 2433, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    O’Shaughnessy KM: Gordon syndrome: a continuing story. Pediatr Nephrol 30: 19031908, 2015 PubMed

  • 11

    Ellison DH, Terker AS, Gamba G: Potassium and its discontents: new insight, new treatments. J Am Soc Nephrol 27: 981989, 2016 PubMed

  • 12

    Pacheco-Alvarez D, Cristóbal PS, Meade P, Moreno E, Vazquez N, Muñoz E, Díaz A, Juárez ME, Giménez I, Gamba G: The Na+:Cl cotransporter is activated and phosphorylated at the amino-terminal domain upon intracellular chloride depletion. J Biol Chem 281: 2875528763, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Piechotta K, Lu J, Delpire E: Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J Biol Chem 277: 5081250819, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Vitari AC, Deak M, Morrice NA, Alessi DR: The WNK1 and WNK4 protein kinases that are mutated in Gordon’s hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J 391: 1724, 2005 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ: Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal 7: ra41, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Su XT, Klett NJ, Sharma A, Allen CN, Wang WH, Yang CL, Ellison DH: Distal convoluted tubule Cl concentration is modulated via K+ channels and transporters. Am J Physiol Renal Physiol 319: F534F540, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Arroyo JP, Ronzaud C, Lagnaz D, Staub O, Gamba G: Aldosterone paradox: differential regulation of ion transport in distal nephron. Physiology (Bethesda) 26: 115123, 2011 PubMed

    • Search Google Scholar
    • Export Citation
  • 18

    Clase CM, Carrero JJ, Ellison DH, Grams ME, Hemmelgarn BR, Jardine MJ, Kovesdy CP, Kline GA, Lindner G, Obrador GT, Palmer BF, Cheung M, Wheeler DC, Winkelmayer WC, Pecoits-Filho R; Conference Participants: Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int 97: 4261, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Lowe G, Stike R, Pollack M, Bosley J, O’Brien P, Hake A, Landis G, Billings N, Gordon P, Manzella S, Stover T: Nursing blood specimen collection techniques and hemolysis rates in an emergency department: analysis of venipuncture versus intravenous catheter collection techniques. J Emerg Nurs 34: 2632, 2008 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Ranjitkar P, Greene DN, Baird GS, Hoofnagle AN, Mathias PC: Establishing evidence-based thresholds and laboratory practices to reduce inappropriate treatment of pseudohyperkalemia. Clin Biochem 50: 663669, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Friedman PA, Scott CG, Bailey K, Baumann NA, Albert D, Attia ZI, Ladewig DJ, Yasin O, Dillon JJ, Singh B: Errors of classification with potassium blood testing: the variability and repeatability of critical clinical tests. Mayo Clin Proc 93: 566572, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    Bloom BM, Connor H, Benton S, Harris T: A comparison of measurements of sodium, potassium, haemoglobin and creatinine between an Emergency Department-based point-of-care machine and the hospital laboratory. Eur J Emerg Med 21: 310313, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Hartland AJ, Neary RH: Serum potassium is unreliable as an estimate of in vivo plasma potassium. Clin Chem 45: 10911092, 1999 PubMed

  • 24

    Durfey N, Lehnhof B, Bergeson A, Durfey SNM, Leytin V, McAteer K, Schwam E, Valiquet J: Severe hyperkalemia: can the electrocardiogram risk stratify for short-term adverse events? West J Emerg Med 18: 963971, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Yasin OZ, Attia Z, Dillon JJ, DeSimone CV, Sapir Y, Dugan J, Somers VK, Ackerman MJ, Asirvatham SJ, Scott CG, Bennet KE, Ladewig DJ, Sadot D, Geva AB, Friedman PA: Noninvasive blood potassium measurement using signal-processed, single-lead ECG acquired from a handheld smartphone. J Electrocardiol 50: 620625, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Dillon JJ, DeSimone CV, Sapir Y, Somers VK, Dugan JL, Bruce CJ, Ackerman MJ, Asirvatham SJ, Striemer BL, Bukartyk J, Scott CG, Bennet KE, Mikell SB, Ladewig DJ, Gilles EJ, Geva A, Sadot D, Friedman PA: Noninvasive potassium determination using a mathematically processed ECG: Proof of concept for a novel “blood-less, blood test”. J Electrocardiol 48: 1218, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Lin CS, Lin C, Fang WH, Hsu CJ, Chen SJ, Huang KH, Lin WS, Tsai CS, Kuo CC, Chau T, Yang SJ, Lin SH: A deep-learning algorithm (ECG12Net) for detecting hypokalemia and hyperkalemia by electrocardiography: algorithm development. JMIR Med Inform 8: e15931, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Galloway CD, Valys AV, Shreibati JB, Treiman DL, Petterson FL, Gundotra VP, Albert DE, Attia ZI, Carter RE, Asirvatham SJ, Ackerman M, Noseworthy PA, Dillon JJ, Friedman PA: Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram. JAMA Cardiol 4: 428436, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Wei KY, Gritter M, Vogt L, de Borst MH, Rotmans JI, Hoorn EJ: Dietary potassium and the kidney: Lifesaving physiology. Clin Kidney J 13: 952968, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Kaesler N, Baid-Agrawal S, Grams S, Nadal J, Schmid M, Schneider MP, Eckardt KU, Floege J, Bergmann MM, Schlieper G, Saritas T: Low adherence to CKD-specific dietary recommendations associates with impaired kidney function, dyslipidemia, and inflammation. Eur J Clin Nutr 75: 13891397, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Ben Salem C, Badreddine A, Fathallah N, Slim R, Hmouda H: Drug-induced hyperkalemia. Drug Saf 37: 677692, 2014 PubMed

  • 32

    Gilligan S, Raphael KL: Hyperkalemia and hypokalemia in CKD: Prevalence, risk factors, and clinical outcomes. Adv Chronic Kidney Dis 24: 315318, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Jurkat-Rott K, Lehmann-Horn F: Genotype-phenotype correlation and therapeutic rationale in hyperkalemic periodic paralysis. Neurotherapeutics 4: 216224, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Batlle D, Arruda J: Hyperkalemic forms of renal tubular acidosis: clinical and pathophysiological aspects. Adv Chronic Kidney Dis 25: 321333, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35

    Tajima T, Morikawa S, Nakamura A: Clinical features and molecular basis of pseudohypoaldosteronism type 1. Clin Pediatr Endocrinol 26: 109117, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    Perrier R, Boscardin E, Malsure S, Sergi C, Maillard MP, Loffing J, Loffing-Cueni D, Sørensen MV, Koesters R, Rossier BC, Frateschi S, Hummler E: Severe salt-losing syndrome and hyperkalemia induced by adult nephron-specific knockout of the epithelial sodium channel alpha-subunit. J Am Soc Nephrol 27: 2309–2318, 2015 PubMed

    • Search Google Scholar
    • Export Citation
  • 37

    Adachi M, Tajima T, Muroya K: Dietary potassium restriction attenuates urinary sodium wasting in the generalized form of pseudohypoaldosteronism type 1. CEN Case Rep 9: 133137, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Wilson FH, Disse-Nicodème S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z. Jeunemaitre X, Lifton RP: Human hypertension caused by mutations in WNK kinases. Science 293: 11071112, 2001 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    Grimm PR, Coleman R, Delpire E, Welling PA: Constitutively active SPAK causes hyperkalemia by activating NCC and remodeling distal tubules. J Am Soc Nephrol 28: 25972606, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40

    Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, Tokhonova IR, Bjornson R, Mane SM, Colussi G, Lebel M, Gordon RD, Semmekrot BA, Poujol A, Välimäki MJ, De Ferrari ME, Sanjad SA, Gutkin M, Karet FE, Tucci JR, Stockigt JR, Keppler-Noreuil KM, Porter CC, Anand SK, Whiteford ML, Davis ID, Dewar SB, Bettinelli A, Fadrowski JJ, Belsha CW, Hunley TE, Nelson RD, Trachtman H, Cole TRP, Pinsk M, Bockenhauer D, Shenoy M, Vaidyanathan P, Foreman JW, Rasoulpour M, Thameem F, Al-Shahrouri HZ, Radhakrishnan J, Gharavi AG, Goilav B, Lifton RP: Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482: 98102, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    Wakabayashi M, Mori T, Isobe K, Sohara E, Susa K, Araki Y, Chiga M, Kikuchi E, Nomura N, Mori Y, Matsuo H, Murata T, Nomura S, Asano T, Kawaguchi H, Nonoyama S, Rai T, Sasaki S, Uchida S: Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension. Cell Rep 3: 858868, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42

    Lindner G, Burdmann EA, Clase CM, Hemmelgarn BR, Herzog CA, Małyszko J, Nagahama M, Pecoits-Filho R, Rafique Z, Rossignol P, Singer AJ: Acute hyperkalemia in the emergency department: A summary from a Kidney Disease: Improving Global Outcomes conference. Eur J Emerg Med 27: 329337, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    Peacock WF, Rafique Z, Clark CL, Singer AJ, Turner S, Miller J, Char D, Lagina A, Smith LM, Blomkalns AL, Caterino JM, Kosiborod M; REVEAL-ED Study Investigators: Real world evidence for treatment of hyperkalemia in the emergency department (REVEAL-ED): A multicenter, prospective, observational study. J Emerg Med 55: 741750, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    Truhlář A, Deakin CD, Soar J, Khalifa GE, Alfonzo A, Bierens JJ, Bierens JJLM, Brattebø G, Brugger H, Dunning J, Hunyadi-Antičević S, Koster RW, Lockey DJ, Lott C, Paal P, Perkins GD, Sandroni C, Thies KC, Zideman DA, Nolan JP; Cardiac arrest in special circumstances section Collaborators: European Resuscitation Council Guidelines for Resuscitation 2015: Section 4. Cardiac arrest in special circumstances. Resuscitation 95: 148201, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45

    Moussavi K, Garcia J, Tellez-Corrales E, Fitter S: Reduced alternative insulin dosing in hyperkalemia: A meta-analysis of effects on hypoglycemia and potassium reduction. Pharmacotherapy 41: 598607, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46

    Allon M, Copkney C: Albuterol and insulin for treatment of hyperkalemia in hemodialysis patients. Kidney Int 38: 869872, 1990 PubMed

  • 47

    Montassier E, Lemoine L, Hardouin JB, Rossignol P, Legrand M: Insulin glucose infusion versus nebulised salbutamol versus combination of salbutamol and insulin glucose in acute hyperkalaemia in the emergency room: protocol for a randomised, multicentre, controlled study (INSAKA). BMJ Open 10: e039277, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48

    Allon M, Shanklin N: Effect of bicarbonate administration on plasma potassium in dialysis patients: interactions with insulin and albuterol. Am J Kidney Dis 28: 508514, 1996 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49

    Knauf H, Mutschler E: Diuretic effectiveness of hydrochlorothiazide and furosemide alone and in combination in chronic renal failure. J Cardiovasc Pharmacol 26: 394400, 1995 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50

    Fliser D, Zurbrüggen I, Mutschler E, Bischoff I, Nussberger J, Franek E, Ritz E: Coadministration of albumin and furosemide in patients with the nephrotic syndrome. Kidney Int 55: 629634, 1999 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51

    Knauf H, Spahn H, Mutschler E: The loop diuretic torasemide in chronic renal failure: Pharmacokinetics and pharmacodynamics. Drugs 41[Suppl 3]: 2334, 1991 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52

    Zehnder C, Gutzwiller JP, Huber A, Schindler C, Schneditz D: Low-potassium and glucose-free dialysis maintains urea but enhances potassium removal. Nephrol Dial Transplant 16: 7884, 2001 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53

    Bansal S, Pergola PE: Current management of hyperkalemia in patients on dialysis. Kidney Int Rep 5: 779789, 2020 PubMed

  • 54

    Shibata M, Kishi T, Iwata H: Clinical study of complications in dialyzed diabetics. Tohoku J Exp Med 141[Suppl]: 417425, 1983 PubMed

  • 55

    Genovesi S, Boriani G, Covic A, Vernooij RWM, Combe C, Burlacu A, Davenport A, Kanbay M, Kirmizis D, Schneditz D, van der Sande F, Basile C; EUDIAL Working Group of ERA-EDTA: Sudden cardiac death in dialysis patients: different causes and management strategies. Nephrol Dial Transplant 36: 396405, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56

    Yusuf AA, Hu Y, Singh B, Menoyo JA, Wetmore JB: Serum potassium levels and mortality in hemodialysis patients: A retrospective cohort study. Am J Nephrol 44: 179186, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57

    Foley RN, Gilbertson DT, Murray T, Collins AJ: Long interdialytic interval and mortality among patients receiving hemodialysis. N Engl J Med 365: 10991107, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58

    Fotheringham J, Fogarty DG, El Nahas M, Campbell MJ, Farrington K: The mortality and hospitalization rates associated with the long interdialytic gap in thrice-weekly hemodialysis patients. Kidney Int 88: 569575, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59

    Brunelli SM, Du Mond C, Oestreicher N, Rakov V, Spiegel DM: Serum potassium and short-term clinical outcomes among hemodialysis patients: Impact of the long interdialytic interval. Am J Kidney Dis 70: 2129, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60

    Ferrey A, You AS, Kovesdy CP, Nakata T, Veliz M, Nguyen DV, Kalantar-Zadeh K, Rhee CM: Dialysate potassium and mortality in a prospective hemodialysis cohort. Am J Nephrol 47: 415423, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61

    Yessayan L, Yee J, Frinak S, Szamosfalvi B: Continuous renal replacement therapy for the management of acid-base and electrolyte imbalances in acute kidney injury. Adv Chronic Kidney Dis 23: 203210, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62

    Flinn RB, Merrill JP, Welzant WR: Treatment of the oliguric patient with a new sodium-exchange resin and sorbitol—A preliminary report. N Engl J Med 264: 111115, 1961 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63

    Meaney CJ, Beccari MV, Yang Y, Zhao J: Systematic review and meta-analysis of patiromer and sodium zirconium cyclosilicate: A new armamentarium for the treatment of hyperkalemia. Pharmacotherapy 37: 401411, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64

    Parks M, Grady D: Sodium polystyrene sulfonate for hyperkalemia. JAMA Intern Med 179: 10231024, 2019 PubMed

  • 65

    Peacock WF, Rafique Z, Vishnevskiy K, Michelson E, Vishneva E, Zvereva T, Nahra R, Li D, Miller J: Emergency potassium normalization treatment including sodium zirconium cyclosilicate: A phase ii, randomized, double-blind, placebo-controlled study (ENERGIZE). Acad Emerg Med 27: 475486, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66

    Bakris GL, Pitt B, Weir MR, Freeman MW, Mayo MR, Garza D, Stasiv Y, Zawadzki R, Berman L, Bushinsky DA: AMETHYST-DN Investigators: Effect of patiromer on serum potassium level in patients with hyperkalemia and diabetic kidney disease: The AMETHYST-DN randomized clinical trial. JAMA 314: 151161, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67

    Amdur RL, Paul R, Barrows ED, Kincaid D, Muralidharan J, Nobakht E, Centron-Vinales P, Siddiqi M, Patel SS, Raj DS: The potassium regulator patiromer affects serum and stool electrolytes in patients receiving hemodialysis. Kidney Int 98: 13311340, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68

    Leon SJ, Harasemiw O, Tangri N: New therapies for hyperkalemia. Curr Opin Nephrol Hypertens 28: 238244, 2019 PubMed

  • 69

    Agarwal R, Rossignol P, Romero A, Garza D, Mayo MR, Warren S, Ma J, White WB, Williams B: Patiromer versus placebo to enable spironolactone use in patients with resistant hypertension and chronic kidney disease (AMBER): A phase 2, randomised, double-blind, placebo-controlled trial. Lancet 394: 15401550, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70

    Rossignol P, Williams B, Mayo MR, Warren S, Arthur S, Ackourey G, White WB. Agarwal R: Patiromer versus placebo to enable spironolactone use in patients with resistant hypertension and chronic kidney disease (AMBER): Results in the pre-specified subgroup with heart failure. Eur J Heart Fail 22: 14621471, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71

    Kovesdy CP, Gosmanova EO, Woods SD, Fogli JJ, Rowan CG, Hansen JL, Sauer BC: Real-world management of hyperkalemia with patiromer among United States Veterans. Postgrad Med 132: 176183, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72

    Wiederkehr MR, Mehta AN, Emmett M: Case report: Patiromer-induced hypercalcemia. Clin Nephrol Case Stud 7: 5153, 2019 PubMed

  • 73

    Packham DK, Rasmussen HS, Lavin PT, El-Shahawy MA, Roger SD, Block G, Qunibi W, Pergola P, Singh B: Sodium zirconium cyclosilicate in hyperkalemia. N Engl J Med 372: 222231, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74

    Zannad F, Hsu BG, Maeda Y, Shin SK, Vishneva EM, Rensfeldt M, Eklund S, Zhao J: Efficacy and safety of sodium zirconium cyclosilicate for hyperkalaemia: The randomized, placebo-controlled HARMONIZE-Global study. ESC Heart Fail 7: 5464, 2020 PubMed

    • Search Google Scholar
    • Export Citation
  • 75

    Fishbane S, Ford M, Fukagawa M, McCafferty K, Rastogi A, Spinowitz B, Staroselskiy K, Vishnevskiy K, Lisovskaja V, Al-Shurbaji A, Guzman N, Bhandari S: A phase 3b, randomized, double-blind, placebo-controlled study of sodium zirconium cyclosilicate for reducing the incidence of predialysis hyperkalemia. J Am Soc Nephrol 30: 17231733, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76

    Roger SD, Lavin PT, Lerma EV, McCullough PA, Butler J, Spinowitz BS, von Haehling S, Kosiborod M, Zhao J, Fishbane S, Packham DK: Long-term safety and efficacy of sodium zirconium cyclosilicate for hyperkalaemia in patients with mild/moderate versus severe/end-stage chronic kidney disease: comparative results from an open-label, Phase 3 study. Nephrol Dial Transplant 36: 137150, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77

    Roger SD, Spinowitz BS, Lerma EV, Fishbane S, Ash SR, Martins JG, Quinn CM, Packham DK: Sodium zirconium cyclosilicate increases serum bicarbonate concentrations among patients with hyperkalaemia: Exploratory analyses from three randomized, multi-dose, placebo-controlled trials. Nephrol Dial Transplant 36: 871883, 2021 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78

    Wesson DE: Sodium zirconium cyclosilicate for hyperkalemia: A collateral acid-base benefit? Nephrol Dial Transplant 36: 756760, 2021 PubMed

Metrics

All Time Past Year Past 30 Days
Abstract Views 28 28 28
Full Text Views 31 31 31
PDF Downloads 40 40 40