Renal Osteodystrophy and Bone Biopsy
View More View Less
  • 1 Department of Medicine, University of Washington, Seattle, WA
  • 1.

    Moe S, Drüeke T, Cunningham J, Goodman W, Martin K, Olgaard K, ; Kidney Disease: Improving Global Outcomes (KDIGO): Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 69: 19451953, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Ott SM, Elder GJ: Osteoporosis associated with chronic kidney disease. In: Marcus and Feldman's Osteoporosis,2. 5th Ed., edited by Dempster D, Cauley J, Bouxsein M, Cosman F, Amsterdam, Elsevier, 2020, pp 13251380

    • Search Google Scholar
    • Export Citation
  • 3.

    Hu MC, Shi M, Moe OW: Role of αKlotho and FGF23 in regulation of type II Na-dependent phosphate co-transporters. Pflugers Arch 471: 99108, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Erben RG: α-Klotho’s effects on mineral homeostasis are fibroblast growth factor-23 dependent. Curr Opin Nephrol Hypertens 27: 229235, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Urena Torres P, Friedlander G, de Vernejoul MC, Silve C, Prié D: Bone mass does not correlate with the serum fibroblast growth factor 23 in hemodialysis patients. Kidney Int 73: 102107, 2008 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Isakova T, Cai X, Lee J, Katz R, Cauley JA, Fried LF, ; Health ABC Study: Associations of FGF23 With Change in Bone Mineral Density and Fracture Risk in Older Individuals. J Bone Miner Res 31: 742748, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Manghat P, Fraser WD, Wierzbicki AS, Fogelman I, Goldsmith DJ, Hampson G: Fibroblast growth factor-23 is associated with C-reactive protein, serum phosphate and bone mineral density in chronic kidney disease. Osteoporos Int 21: 18531861, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Kanda E, Yoshida M, Sasaki S: Applicability of fibroblast growth factor 23 for evaluation of risk of vertebral fracture and chronic kidney disease-mineral bone disease in elderly chronic kidney disease patients. BMC Nephrol 13: 122, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Desbiens LC, Sidibé A, Ung RV, Fortier C, Munger M, Wang YP, : FGF23-klotho axis, bone fractures, and arterial stiffness in dialysis: a case-control study. Osteoporos Int 29: 23452353, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Liu S, Gupta A, Quarles LD: Emerging role of fibroblast growth factor 23 in a bone-kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization. Curr Opin Nephrol Hypertens 16: 329335, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, : The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117: 40034008, 2007 PubMed

    • Search Google Scholar
    • Export Citation
  • 12.

    Krajisnik T, Björklund P, Marsell R, Ljunggren O, Akerström G, Jonsson KB, : Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol 195: 125131, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Mace ML, Gravesen E, Nordholm A, Olgaard K, Lewin E: Fibroblast Growth Factor (FGF) 23 Regulates the Plasma Levels of Parathyroid Hormone In Vivo Through the FGF Receptor in Normocalcemia, But Not in Hypocalcemia. Calcif Tissue Int 102: 8592, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Kawakami K, Takeshita A, Furushima K, Miyajima M, Hatamura I, Kuro-O M, : Persistent fibroblast growth factor 23 signalling in the parathyroid glands for secondary hyperparathyroidism in mice with chronic kidney disease. Sci Rep 7: 40534, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Krajisnik T, Olauson H, Mirza MA, Hellman P, Akerström G, Westin G, : Parathyroid Klotho and FGF-receptor 1 expression decline with renal function in hyperparathyroid patients with chronic kidney disease and kidney transplant recipients. Kidney Int 78: 10241032, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Galitzer H, Ben-Dov IZ, Silver J, Naveh-Many T: Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int 77: 211218, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Rhee Y, Bivi N, Farrow E, Lezcano V, Plotkin LI, White KE, : Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 49: 636643, 2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Manson SR, Niederhoff RA, Hruska KA, Austin PF: The BMP-7-Smad1/5/8 pathway promotes kidney repair after obstruction induced renal injury. J Urol 185[Suppl]: 25232530, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Chaudhary LR, Hofmeister AM, Hruska KA: Differential growth factor control of bone formation through osteoprogenitor differentiation. Bone 34: 402411, 2004 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    González EA, Lund RJ, Martin KJ, McCartney JE, Tondravi MM, Sampath TK, : Treatment of a murine model of high-turnover renal osteodystrophy by exogenous BMP-7. Kidney Int 61: 13221331, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Lund RJ, Davies MR, Brown AJ, Hruska KA: Successful treatment of an adynamic bone disorder with bone morphogenetic protein-7 in a renal ablation model. J Am Soc Nephrol 15: 359369, 2004 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Masuyama R, Stockmans I, Torrekens S, Van Looveren R, Maes C, Carmeliet P, : Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest 116: 31503159, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M, : Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 17: 13051315, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Sprague SM, Wetmore JB, Gurevich K, Da Roza G, Buerkert J, Reiner M, : Effect of Cinacalcet and Vitamin D Analogs on Fibroblast Growth Factor-23 during the Treatment of Secondary Hyperparathyroidism. Clin J Am Soc Nephrol 10: 10211030, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Ma L, Gao M, Wu L, Zhao X, Mao H, Xing C: The suppressive effect of soluble Klotho on fibroblastic growth factor 23 synthesis in UMR-106 osteoblast-like cells. Cell Biol Int 42: 12701274, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, : Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317: 803806, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Sakai R, Fujita S, Horie T, Ohyama T, Miwa K, Maki T, : Activin increases bone mass and mechanical strength of lumbar vertebrae in aged ovariectomized rats. Bone 27: 9196, 2000 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM: Activin A in Mammalian Physiology. Physiol Rev 99: 739780, 2019 PubMed

  • 29.

    Verzola D, Barisione C, Picciotto D, Garibotto G, Koppe L: Emerging role of myostatin and its inhibition in the setting of chronic kidney disease. Kidney Int 95: 506517, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Lima F, Mawad H, El-Husseini AA, Davenport DL, Malluche HH: Serum bone markers in ROD patients across the spectrum of decreases in GFR: Activin A increases before all other markers. Clin Nephrol 91: 222230, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Lotinun S, Pearsall RS, Davies MV, Marvell TH, Monnell TE, Ucran J, : A soluble activin receptor Type IIA fusion protein (ACE-011) increases bone mass via a dual anabolic-antiresorptive effect in Cynomolgus monkeys. Bone 46: 10821088, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Ruckle J, Jacobs M, Kramer W, Pearsall AE, Kumar R, Underwood KW, : Single-dose, randomized, double-blind, placebo-controlled study of ACE-011 (ActRIIA-IgG1) in postmenopausal women. J Bone Miner Res 24: 744752, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Williams MJ, Sugatani T, Agapova OA, Fang Y, Gaut JP, Faugere MC, : The activin receptor is stimulated in the skeleton, vasculature, heart, and kidney during chronic kidney disease. Kidney Int 93: 147158, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Sugatani T, Agapova OA, Fang Y, Berman AG, Wallace JM, Malluche HH, : Ligand trap of the activin receptor type IIA inhibits osteoclast stimulation of bone remodeling in diabetic mice with chronic kidney disease. Kidney Int 91: 8695, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Agapova OA, Fang Y, Sugatani T, Seifert ME, Hruska KA: Ligand trap for the activin type IIA receptor protects against vascular disease and renal fibrosis in mice with chronic kidney disease. Kidney Int 89: 12311243, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Bushinsky DA: Acidosis and renal bone disease. In: The Spectrum of Mineral and Bone Disorders in Chronic Kidney Disease, edited by Olgaard K, Salusky IB, Silver J, Oxford, Oxford University Press, 2010, pp 253265

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Jorgetti V, Drüeke TB, Ott SM: Role of proton receptor OGR1 in bone response to metabolic acidosis? Kidney Int 89: 529531, 2016 PubMed

  • 38.

    Krieger NS, Yao Z, Kyker-Snowman K, Kim MH, Boyce BF, Bushinsky DA: Increased bone density in mice lacking the proton receptor OGR1. Kidney Int 89: 565573, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Krieger NS, Bushinsky DA: Stimulation of fibroblast growth factor 23 by metabolic acidosis requires osteoblastic intracellular calcium signaling and prostaglandin synthesis. Am J Physiol Renal Physiol 313: F882F886, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Doumouchtsis KK, Kostakis AI, Doumouchtsis SK, Grapsa EI, Passalidou IA, Tziamalis MP, : The effect of sexual hormone abnormalities on proximal femur bone mineral density in hemodialysis patients and the possible role of RANKL. Hemodial Int 12: 100107, 2008 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Stehman-Breen C, Anderson G, Gibson D, Kausz AT, Ott S: Pharmacokinetics of oral micronized beta-estradiol in postmenopausal women receiving maintenance hemodialysis. Kidney Int 64: 290294, 2003 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Albaaj F, Sivalingham M, Haynes P, McKinnon G, Foley RN, Waldek S, : Prevalence of hypogonadism in male patients with renal failure. Postgrad Med J 82: 693696, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Khurana KK, Navaneethan SD, Arrigain S, Schold JD, Nally JV Jr, Shoskes DA: Serum testosterone levels and mortality in men with CKD stages 3-4. Am J Kidney Dis 64: 367374, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Aleksova J, Rodriguez AJ, McLachlan R, Kerr P, Milat F, Ebeling PR: Gonadal Hormones in the Pathogenesis and Treatment of Bone Health in Patients with Chronic Kidney Disease: a Systematic Review and Meta-Analysis. Curr Osteoporos Rep 16: 674692, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Carrero JJ, Qureshi AR, Nakashima A, Arver S, Parini P, Lindholm B, : Prevalence and clinical implications of testosterone deficiency in men with end-stage renal disease. Nephrol Dial Transplant 26: 184190, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Khosla S, Melton LJ 3rd, Riggs BL: Estrogens and bone health in men. Calcif Tissue Int 69: 189192, 2001 PubMed

  • 47.

    Shanbhogue VV, Hansen S, Frost M, Brixen K, Hermann AP: Bone disease in diabetes: another manifestation of microvascular disease? Lancet Diabetes Endocrinol 5: 827838, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Fulzele K, Clemens TL: Novel functions for insulin in bone. Bone 50: 452456, 2012 PubMed

  • 49.

    Wang W, Zhang X, Zheng J, Yang J: High glucose stimulates adipogenic and inhibits osteogenic differentiation in MG-63 cells through cAMP/protein kinase A/extracellular signal-regulated kinase pathway. Mol Cell Biochem 338: 115122, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Holden RM, Morton AR, Garland JS, Pavlov A, Day AG, Booth SL: Vitamins K and D status in stages 3-5 chronic kidney disease. Clin J Am Soc Nephrol 5: 590597, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Cranenburg EC, Schurgers LJ, Uiterwijk HH, Beulens JW, Dalmeijer GW, Westerhuis R, : Vitamin K intake and status are low in hemodialysis patients. Kidney Int 82: 605610, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    McCabe KM, Booth SL, Fu X, Shobeiri N, Pang JJ, Adams MA, : Dietary vitamin K and therapeutic warfarin alter the susceptibility to vascular calcification in experimental chronic kidney disease. Kidney Int 83: 835844, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Westenfeld R, Krueger T, Schlieper G, Cranenburg EC, Magdeleyns EJ, Heidenreich S, : Effect of vitamin K2 supplementation on functional vitamin K deficiency in hemodialysis patients: a randomized trial. Am J Kidney Dis 59: 186195, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Lau WCY, Cheung CL, Man KKC, Chan EW, Sing CW, Lip GYH, : Association Between Treatment With Apixaban, Dabigatran, Rivaroxaban, or Warfarin and Risk for Osteoporotic Fractures Among Patients With Atrial Fibrillation: A Population-Based Cohort Study. Ann Intern Med 173: 19, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Yakar S, Canalis E, Sun H, Mejia W, Kawashima Y, Nasser P, : Serum IGF-1 determines skeletal strength by regulating subperiosteal expansion and trait interactions. J Bone Miner Res 24: 14811492, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Kiepe D, Tönshoff B: Insulin-like growth factors in normal and diseased kidney. Endocrinol Metab Clin North Am 41: 351374, vii, 2012 [vii.] PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Han DS, Chen YM, Lin SY, Chang HH, Huang TM, Chi YC, : Serum myostatin levels and grip strength in normal subjects and patients on maintenance haemodialysis. Clin Endocrinol (Oxf) 75: 857863, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Longo KA, Kennell JA, Ochocinska MJ, Ross SE, Wright WS, MacDougald OA: Wnt signaling protects 3T3-L1 preadipocytes from apoptosis through induction of insulin-like growth factors. J Biol Chem 277: 3823938244, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Ott SM, Maloney NA, Coburn JW, Alfrey AC, Sherrard DJ: The prevalence of bone aluminum deposition in renal osteodystrophy and its relation to the response to calcitriol therapy. N Engl J Med 307: 709713, 1982 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Carbonara CEM, Reis LMD, Quadros KRDS, Roza NAV, Sano R, Carvalho AB, : Renal osteodystrophy and clinical outcomes: data from the Brazilian Registry of Bone Biopsies - REBRABO. J Bras Nefrol 42: 138146, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    D’Haese PC, Couttenye MM, Lamberts LV, Elseviers MM, Goodman WG, Schrooten I, : Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of end-stage renal failure patients. Clin Chem 45: 15481556, 1999 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    McCarthy JT, Hodgson SF, Fairbanks VF, Moyer TP: Clinical and histologic features of iron-related bone disease in dialysis patients. Am J Kidney Dis 17: 551561, 1991 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Yang Q, Jian J, Abramson SB, Huang X: Inhibitory effects of iron on bone morphogenetic protein 2-induced osteoblastogenesis. J Bone Miner Res 26: 11881196, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Oste L, Bervoets AR, Behets GJ, Dams G, Marijnissen RL, Geryl H, : Time-evolution and reversibility of strontium-induced osteomalacia in chronic renal failure rats. Kidney Int 67: 920930, 2005 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Schrooten I, Behets GJ, Cabrera WE, Vercauteren SR, Lamberts LV, Verberckmoes SC, : Dose-dependent effects of strontium on bone of chronic renal failure rats. Kidney Int 63: 927935, 2003 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    D’Haese PC, Schrooten I, Goodman WG, Cabrera WE, Lamberts LV, Elseviers MM, : Increased bone strontium levels in hemodialysis patients with osteomalacia. Kidney Int 57: 11071114, 2000 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Cohen-Solal M: Strontium overload and toxicity: impact on renal osteodystrophy. Nephrol Dial Transplant 17[Suppl 2]: 3034, 2002 PubMed

  • 68.

    Chavassieux P, Meunier PJ, Roux JP, Portero-Muzy N, Pierre M, Chapurlat R: Bone histomorphometry of transiliac paired bone biopsies after 6 or 12 months of treatment with oral strontium ranelate in 387 osteoporotic women. Randomized comparison to alendronate. J Bone Miner Res: 29: 618628, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Teitelbaum SL: Glucocorticoids and the osteoclast. Clin Exp Rheumatol 33[Suppl 92]: S37S39, 2015 PubMed

  • 70.

    Ott SM: Pharmacology of Bisphosphonates in Patients with Chronic Kidney Disease. Semin Dial 28: 363369, 2015 PubMed

  • 71.

    Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, : Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28: 217, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    National Kidney Foundation. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group: KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Available at https://kdigo.org/wp-content/uploads/2017/02/KDIGO-2009-CKD-MBD-Guideline-English.pdf. Accessed December 10, 2020

    • Export Citation
  • 73.

    Ott SM: Renal Osteodystrophy-Time for Common Nomenclature. Curr Osteoporos Rep 15: 187193, 2017 PubMed

  • 74.

    Paton‐Hough J, Tazzyman S, Evans H, Lath D, Down JM, Green AC, : Preventing and Repairing Myeloma Bone Disease by Combining Conventional Antiresorptive Treatment With a Bone Anabolic Agent in Murine Models. J Bone Miner Res 34:783796, 2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Glorieux FH, Travers R, Taylor A, Bowen JR, Rauch F, Norman M, : Normative data for iliac bone histomorphometry in growing children. Bone 26: 103109, 2000 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Parisien M, Cosman F, Morgan D, Schnitzer M, Liang X, Nieves J, : Histomorphometric assessment of bone mass, structure, and remodeling: a comparison between healthy black and white premenopausal women. J Bone Miner Res 12: 948957, 1997 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Recker RR, Kimmel DB, Parfitt AM, Davies KM, Keshawarz N, Hinders S: Static and tetracycline-based bone histomorphometric data from 34 normal postmenopausal females. J Bone Miner Res 3: 133144, 1988 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Recker RR, Akhter MP, Lappe JM, Watson P: Bone histomorphometry in transiliac biopsies from 48 normal, healthy men. Bone 111: 109115, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Malluche HH, Mawad HW, Monier-Faugere MC: Renal osteodystrophy in the first decade of the new millennium: analysis of 630 bone biopsies in black and white patients. J Bone Miner Res 26: 13681376, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Han ZH, Palnitkar S, Rao DS, Nelson D, Parfitt AM: Effects of ethnicity and age or menopause on the remodeling and turnover of iliac bone: implications for mechanisms of bone loss. J Bone Miner Res 12: 498508, 1997 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Ott SM: Bone strength: more than just bone density. Kidney Int 89: 1619, 2016 PubMed

  • 82.

    Faibish D, Ott SM, Boskey AL: Mineral changes in osteoporosis: a review. Clin Orthop Relat Res 443: 2838, 2006 PubMed

  • 83.

    Allen MR, McNerny EM, Organ JM, Wallace JM: True Gold or Pyrite: A Review of Reference Point Indentation for Assessing Bone Mechanical Properties In Vivo. J Bone Miner Res 30: 15391550, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Ott SM: Bone histomorphometry in renal osteodystrophy. Semin Nephrol 29: 122132, 2009 PubMed

  • 85.

    Gerakis A, Hadjidakis D, Kokkinakis E, Apostolou T, Raptis S, Billis A: Correlation of bone mineral density with the histological findings of renal osteodystrophy in patients on hemodialysis. J Nephrol 13: 437443, 2000 PubMed

    • Search Google Scholar
    • Export Citation
  • 86.

    Araújo SM, Ambrosoni P, Lobão RR, Caorsi H, Moysés RM, Barreto FC, : The renal osteodystrophy pattern in Brazil and Uruguay: an overview. Kidney Int Suppl (85): S54S56, 2003 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    National Kidney Foundation. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group: KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Available at https://kdigo.org/wp-content/uploads/2017/02/2017-KDIGO-CKD-MBD-GL-Update.pdf. Accessed December 10, 2020

    • Export Citation
  • 88.

    Salam S, Gallagher O, Gossiel F, Paggiosi M, Khwaja A, Eastell R: Diagnostic Accuracy of Biomarkers and Imaging for Bone Turnover in Renal Osteodystrophy. J Am Soc Nephrol 29: 15571565, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    Sprague SM, Bellorin-Font E, Jorgetti V, Carvalho AB, Malluche HH, Ferreira A, : Diagnostic Accuracy of Bone Turnover Markers and Bone Histology in Patients With CKD Treated by Dialysis. Am J Kidney Dis 67: 559566, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Aaltonen L, Koivuviita N, Seppänen M, Tong X, Kröger H, Löyttyniemi E, : Correlation between 18F-Sodium Fluoride positron emission tomography and bone histomorphometry in dialysis patients. Bone 134: 115267, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    Evenepoel P, D’Haese P, Bacchetta J, Cannata-Andia J, Ferreira A, Haarhaus M, ; ERA-EDTA Working Group on CKD-MBD: Bone biopsy practice patterns across Europe: the European renal osteodystrophy initiative-a position paper. Nephrol Dial Transplant 32: 16081613, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 92.

    Moe SM, Abdalla S, Chertow GM, Parfrey PS, Block GA, Correa-Rotter R, ; Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial Investigators: Effects of Cinacalcet on Fracture Events in Patients Receiving Hemodialysis: The EVOLVE Trial. J Am Soc Nephrol 26: 14661475, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Toussaint ND, Lau KK, Strauss BJ, Polkinghorne KR, Kerr PG: Effect of alendronate on vascular calcification in CKD stages 3 and 4: a pilot randomized controlled trial. Am J Kidney Dis 56: 5768, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    Ott SM: Osteoporosis and Bone Physiology http://courses.washington.edu/bonephys/2019. Accessed December 10, 2020

    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 427 427 86
Full Text Views 171 171 60
PDF Downloads 93 93 36