Secondary Hyperparathyroidism and Hyperphosphatemia
View More View Less
  • 1 Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas and Division of Nephrology and Hypertension, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
  • 2 Chronic Disease Research Group, Hennepin Healthcare Research Institute, Minneapolis, Minnesota, Division of Nephrology, Hennepin County Medical Center, Minneapolis, Minnesota, and Department of Medicine, University of Minnesota, Minneapolis, Minnesota
  • 1.

    Geng S, Kuang Z, Peissig PL, Page D, Maursetter L, Hansen KE: Parathyroid hormone independently predicts fracture, vascular events, and death in patients with stage 3 and 4 chronic kidney disease. Osteoporos Int 30: 20192025, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    National Kidney Foundation. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group: KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention and treatment of chronic kidney disease-mineral and bone disorder CKD-MBD. Available at https://kdigo.org/wp-content/uploads/2017/02/2017-KDIGO-CKD-MBD-GL-Update.pdf. Accessed August 4, 2020

    • Search Google Scholar
    • Export Citation
  • 3.

    Seiler-Mussler S, Limbach AS, Emrich IE, Pickering JW, Roth HJ, Fliser D, et al. .: Association of nonoxidized parathyroid hormone with cardiovascular and kidney disease outcomes in chronic kidney disease. Clin J Am Soc Nephrol 13: 569576, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Levy AR, Xing S, Brunelli SM, Cooper K, Finkelstein FO, Germain MJ, et al. .: Symptoms of secondary hyperparathyroidism in patients receiving maintenance hemodialysis: A prospective cohort study. Am J Kidney Dis 75: 373383, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Sprague SM, Bellorin-Font E, Jorgetti V, Carvalho AB, Malluche HH, Ferreira A, et al. .: Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD Treated by dialysis. Am J Kidney Dis 67: 559566, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Covic A, Voroneanu L, Apetrii M: PTH and/or bone histology: Are we still waiting for a verdict from the CKD-MBD grand jury? Am J Kidney Dis 67: 535538, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Bushinsky DA, Chertow GM, Cheng S, Deng H, Kopyt N, Martin KJ, et al. .: One-year safety and efficacy of intravenous etelcalcetide in patients on hemodialysis with secondary hyperparathyroidism. Nephrol Dial Transplant 35: 17691778, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Wolf M, Block GA, Chertow GM, Cooper K, Fouqueray B, Moe SM, et al. .: Effects of etelcalcetide on fibroblast growth factor 23 in patients with secondary hyperparathyroidism receiving hemodialysis. Clin Kidney J 13: 7584, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Dörr K, Kammer M, Reindl-Schwaighofer R, Lorenz M, Loewe C, Marculescu R, et al. .: Effect of etelcalcetide on cardiac hypertrophy in hemodialysis patients: a randomized controlled trial (ETECAR-HD). Trials 20: 601, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Chertow GM, Block GA, Correa-Rotter R, Drüeke TB, Floege J, Goodman WG, et al. .; EVOLVE Trial Investigators: Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med 367: 24822494, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Floege J, Tsirtsonis K, Iles J, Drueke TB, Chertow GM, Parfrey P: Incidence, predictors and therapeutic consequences of hypocalcemia in patients treated with cinacalcet in the EVOLVE trial. Kidney Int 93: 14751482, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Fukagawa M, Shimazaki R, Akizawa T; Evocalcet study group: Head-to-head comparison of the new calcimimetic agent evocalcet with cinacalcet in Japanese hemodialysis patients with secondary hyperparathyroidism. Kidney Int 94: 818825, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Díaz-Tocados JM, Rodríguez-Ortiz ME, Almadén Y, Pineda C, Martínez-Moreno JM, Herencia C, et al. .: Calcimimetics maintain bone turnover in uremic rats despite the concomitant decrease in parathyroid hormone concentration. Kidney Int 95: 10641078, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Mazzaferro S, Pasquali M: Direct bone effects of calcimimetics in chronic kidney disease? Kidney Int 95: 10121014, 2019 PubMed

  • 15.

    Okuno S, Inaba M, Ishimura E, Nakatani S, Chou H, Shoji S, et al. .: Effects of long-term cinacalcet administration on parathyroid gland in hemodialysis patients with secondary hyperparathyroidism. Nephron 142: 106113, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Ruderman I, Holt SG, Kirkland GS, Maslen S, Hawley CM, Oliver V, et al. .: Outcomes of cinacalcet withdrawal in Australian dialysis patients. Intern Med J 49: 4854, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Wetmore JB: Calcimimetics: A promise unfulfilled. Am J Kidney Dis 76: 308310, 2020 PubMed

  • 18.

    Lin E, Watnick S: Calcimimetics and bundled reimbursement. Am J Kidney Dis 73: 385390, 2019 PubMed

  • 19.

    Thadhani RI, Rosen S, Ofsthun NJ, Usvyat LA, Dalrymple LS, Maddux FW, et al. .: Conversion from intravenous vitamin D analogs to oral calcitriol in patients receiving maintenance hemodialysis. Clin J Am Soc Nephrol 15: 384391, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Pires GO, Vieira IO, Hernandes FR, Teixeira AL, Oliveira IB, Dominguez WV, et al. .: Effects of parathyroidectomy on the biology of bone tissue in patients with chronic kidney disease and secondary hyperparathyroidism. Bone 121: 277283, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Fang L, Wu J, Luo J, Wen P, Xiong M, Cao J, et al. .: Changes in bone mineral density after total parathyroidectomy without autotransplantation in the end-stage renal disease patients with secondary hyperparathyroidism. BMC Nephrol 19: 142, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Carrillo-López N, Panizo S, Alonso-Montes C, Martínez-Arias L, Avello N, Sosa P, et al. .: High-serum phosphate and parathyroid hormone distinctly regulate bone loss and vascular calcification in experimental chronic kidney disease. Nephrol Dial Transplant 34: 934941, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    El-Husseini A, Wang K, Edon A, Saxon D, Lima F, Sloan D, et al. .: Value of intraoperative parathyroid hormone assay during parathyroidectomy in dialysis and renal transplant patients with secondary and tertiary hyperparathyroidism. Nephron 138: 119128, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Alsafran S, Sherman SK, Dahdaleh FS, Ruhle B, Mercier F, Kaplan EL, et al. .: Preoperative calcitriol reduces postoperative intravenous calcium requirements and length of stay in parathyroidectomy for renal-origin hyperparathyroidism. Surgery 165: 151157, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Ding Y, Wang H, Zou Q, Jin Y, Zhang Z, Huang J: Factors associated with calcium requirements after parathyroidectomy in chronic kidney disease patients. Int Urol Nephrol 50: 535540, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    van der Plas WY, Engelsman AF, Umakanthan M, Mather A, Sidhu SB, Delbridge LW, et al. .: Treatment strategy of end stage renal disease-related hyperparathyroidism before, during, and after the era of calcimimetics. Surgery 165: 135141, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Lee JD, Kuo EJ, Du L, Yeh MW, Livhits MJ: Risk factors for readmission after parathyroidectomy for renal hyperparathyroidism. World J Surg 43: 534539, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Ferrandino R, Roof S, Ma Y, Chan L, Poojary P, Saha A, et al. .: Unplanned 30-Day readmissions after parathyroidectomy in patients with chronic kidney disease: A nationwide analysis. Otolaryngol Head Neck Surg 157: 955965, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Anderson K Jr, Ruel E, Adam MA, Thomas S, Youngwirth L, Stang MT, et al. .: Subtotal vs. total parathyroidectomy with autotransplantation for patients with renal hyperparathyroidism have similar outcomes. Am J Surg 214: 914919, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Hou J, Shan H, Zhang Y, Deng X, Guo B, Kang J, et al. .: Network meta-analysis of surgical treatment for secondary hyperparathyroidism. Am J Otolaryngol 41: 102370, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Isaksson E, Ivarsson K, Akaberi S, Muth A, Prütz KG, Clyne N, et al. .: Total versus subtotal parathyroidectomy for secondary hyperparathyroidism. Surgery 165: 142150, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    van der Plas WY, Dulfer RR, Engelsman AF, Vogt L, de Borst MH, van Ginhoven TM, et al. .; Dutch Hyperparathryoid Study Group (DHSG): Effect of parathyroidectomy and cinacalcet on quality of life in patients with end-stage renal disease-related hyperparathyroidism: a systematic review. Nephrol Dial Transplant 32: 19021908, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Ishani A, Liu J, Wetmore JB, Lowe KA, Do T, Bradbury BD, et al. .: Clinical outcomes after parathyroidectomy in a nationwide cohort of patients on hemodialysis. Clin J Am Soc Nephrol 10: 9097, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Isakova T, Wahl P, Vargas GS, Gutiérrez OM, Scialla J, Xie H, et al. .: Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79: 13701378, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Craver L, Marco MP, Martínez I, Rue M, Borràs M, Martín ML, et al. .: Mineral metabolism parameters throughout chronic kidney disease stages 1-5--achievement of K/DOQI target ranges. Nephrol Dial Transplant 22: 11711176, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, et al. .: Diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder: synopsis of the Kidney Disease: Improving Global Outcomes 2017 Clinical Practice Guideline Update. Ann Intern Med 168: 422430, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Gauci C, Moranne O, Fouqueray B, de la Faille R, Maruani G, Haymann JP, et al. .; NephroTest Study Group: Pitfalls of measuring total blood calcium in patients with CKD. J Am Soc Nephrol 19: 15921598, 2008 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Evenepoel P, Bammens B, Claes K, Kuypers D, Meijers BK, Vanrenterghem Y: Measuring total blood calcium displays a low sensitivity for the diagnosis of hypercalcemia in incident renal transplant recipients. Clin J Am Soc Nephrol 5: 20852092, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Morton AR, Garland JS, Holden RM: Is the calcium correct? Measuring serum calcium in dialysis patients. Semin Dial 23: 283289, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Fakhran S, Branstetter BF 4th, Pryma DA: Parathyroid imaging. Neuroimaging Clin N Am 18: 537549, ix, 2008 PubMed

  • 41.

    Albright F, Bauer W, Claflin D, Cockrill JR; The Effect of Phosphate Ingestion in Clinical Hyperparathyroidism: Studies in parathyroid physiology: III. J Clin Invest 11: 411435, 1932 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Drake TG, Albright F, Castleman B: Parathyroid hyperplasia in rabbits produced by parenteral phosphate administration. J Clin Invest 16: 203206, 1937 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Almaden Y, Canalejo A, Hernandez A, Ballesteros E, Garcia-Navarro S, Torres A, et al. .: Direct effect of phosphorus on PTH secretion from whole rat parathyroid glands in vitro. J Bone Miner Res 11: 970976, 1996 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Slatopolsky E, Finch J, Denda M, Ritter C, Zhong M, Dusso A, et al. .: Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro. J Clin Invest 97: 25342540, 1996 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Geng Y, Mosyak L, Kurinov I, Zuo H, Sturchler E, Cheng TC, et al. .: Structural mechanism of ligand activation in human calcium-sensing receptor. eLife 5: e13662, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Centeno PP, Herberger A, Mun HC, Tu C, Nemeth EF, Chang W, et al. .: Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nat Commun 10: 4693, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Portale AA, Halloran BP, Morris RC Jr: Dietary intake of phosphorus modulates the circadian rhythm in serum concentration of phosphorus. Implications for the renal production of 1,25-dihydroxyvitamin D. J Clin Invest 80: 11471154, 1987 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Ix JH, Anderson CA, Smits G, Persky MS, Block GA: Effect of dietary phosphate intake on the circadian rhythm of serum phosphate concentrations in chronic kidney disease: a crossover study. Am J Clin Nutr 100: 13921397, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Fernández-Martín JL, Dusso A, Martínez-Camblor P, Dionisi MP, Floege J, Ketteler M, et al. .; COSMOS group: Serum phosphate optimal timing and range associated with patients survival in haemodialysis: the COSMOS study. Nephrol Dial Transplant 34: 673681, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Leon JB, Sullivan CM, Sehgal AR. The prevalence of phosphorus-containing food additives in top-selling foods in grocery stores. J. Ren. Nutr. 23: 265270.e262, 2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    McCutcheon J, Campbell K, Ferguson M, Day S, Rossi M: Prevalence of phosphorus-based additives in the Australian food supply: A challenge for dietary education? J Ren Nutr 25: 440444, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Calvo MS, Moshfegh AJ, Tucker KL: Assessing the health impact of phosphorus in the food supply: Issues and considerations. Adv Nutr 5: 104113, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Vervloet MG, Sezer S, Massy ZA, Johansson L, Cozzolino M, Fouque D; ERA–EDTA Working Group on Chronic Kidney Disease–Mineral and Bone Disorders and the European Renal Nutrition Working Group: The role of phosphate in kidney disease. Nat Rev Nephrol 13: 2738, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Calvo MS, Uribarri J: Contributions to total phosphorus intake: All sources considered. Semin Dial 26: 5461, 2013 PubMed

  • 55.

    Calvo MS, Sherman RA, Uribarri J: Dietary phosphate and the forgotten kidney patient: A critical need for FDA regulatory action. Am J Kidney Dis 73: 542551, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Sullivan C, Sayre SS, Leon JB, Machekano R, Love TE, Porter D, et al. .: Effect of food additives on hyperphosphatemia among patients with end-stage renal disease: A randomized controlled trial. JAMA 301: 629635, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    de Fornasari ML, Dos Santos Sens YA: Replacing phosphorus-containing food additives with foods without additives reduces phosphatemia in end-stage renal disease patients: A randomized clinical trial. J Ren Nutr 27: 97105, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    D’Alessandro C, Piccoli GB, Cupisti A: The “phosphorus pyramid”: A visual tool for dietary phosphate management in dialysis and CKD patients. BMC Nephrol 16: 9, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Manley HJ, Garvin CG, Drayer DK, Reid GM, Bender WL, Neufeld TK, et al. .: Medication prescribing patterns in ambulatory haemodialysis patients: Comparisons of USRDS to a large not-for-profit dialysis provider. Nephrol Dial Transplant 19: 18421848, 2004 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Chiu YW, Teitelbaum I, Misra M, de Leon EM, Adzize T, Mehrotra R: Pill burden, adherence, hyperphosphatemia, and quality of life in maintenance dialysis patients. Clin J Am Soc Nephrol 4: 10891096, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Sultana J, Musazzi UM, Ingrasciotta Y, Giorgianni F, Ientile V, Fontana A, et al. .: Medication is an additional source of phosphate intake in chronic kidney disease patients. Nutr Metab Cardiovasc Dis 25: 959967, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Li J, Wang L, Han M, Xiong Y, Liao R, Li Y, et al. .: The role of phosphate-containing medications and low dietary phosphorus-protein ratio in reducing intestinal phosphorus load in patients with chronic kidney disease. Nutr Diabetes 9: 14, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Sherman RA, Ravella S, Kapoian T: A dearth of data: the problem of phosphorus in prescription medications. Kidney Int 87: 10971099, 2015 PubMed

  • 64.

    Sherman RA, Ravella S, Kapoian T: The phosphate content of prescription medication: A new consideration. Ther Innov Regul Sci 49: 886889, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Nelson SM, Sarabia SR, Christilaw E, Ward EC, Lynch SK, Adams MA, et al. .: Phosphate-containing prescription medications contribute to the daily phosphate intake in a third of hemodialysis patients. J Ren Nutr 27: 9196, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Winkelmayer WC, Chertow GM: Off-label use of phosphate binders in non-dialysis-dependent CKD. Am J Kidney Dis 56: 813816, 2010 PubMed

  • 67.

    Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, et al. .: Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) guideline update: What’s changed and why it matters. Kidney Int 92: 2636, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Di Iorio B, Bellasi A, Russo D; INDEPENDENT Study Investigators: Mortality in kidney disease patients treated with phosphate binders: A randomized study. Clin J Am Soc Nephrol 7: 487493, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Chertow GM, Burke SK, Raggi P; Treat to Goal Working Group: Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int 62: 245252, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Block GA, Spiegel DM, Ehrlich J, Mehta R, Lindbergh J, Dreisbach A, et al. .: Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int 68: 18151824, 2005 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Inaba M, Okuno S, Nagayama H, Yamada S, Ishimura E, Imanishi Y, et al. .: Restoration of parathyroid function after change of phosphate binder from calcium carbonate to lanthanum carbonate in hemodialysis patients with suppressed serum parathyroid hormone. J Ren Nutr 25: 242246, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Malluche HH, Siami GA, Swanepoel C, Wang GH, Mawad H, Confer S, et al. .; SPD405-307 Lanthanum Carbonate Study Group: Improvements in renal osteodystrophy in patients treated with lanthanum carbonate for two years. Clin Nephrol 70: 284295, 2008 PubMed

    • Search Google Scholar
    • Export Citation
  • 73.

    Hill KM, Martin BR, Wastney ME, McCabe GP, Moe SM, Weaver CM, et al. .: Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease. Kidney Int 83: 959966, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    St Peter WL, Wazny LD, Weinhandl ED: Phosphate-binder use in US dialysis patients: Prevalence, costs, evidence, and policies. Am J Kidney Dis 71: 246253, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Zhang C, Wen J, Li Z, Fan J: Efficacy and safety of lanthanum carbonate on chronic kidney disease-mineral and bone disorder in dialysis patients: A systematic review. BMC Nephrol 14: 226, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Ruospo M, Palmer SC, Natale P, Craig JC, Vecchio M, Elder GJ, et al. .: Phosphate binders for preventing and treating chronic kidney disease-mineral and bone disorder (CKD-MBD). Cochrane Database Syst Rev 8: CD006023, 2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 77.

    Eto N, Miyata Y, Ohno H, Yamashita T: Nicotinamide prevents the development of hyperphosphataemia by suppressing intestinal sodium-dependent phosphate transporter in rats with adenine-induced renal failure. Nephrol Dial Transplant 20: 13781384, 2005 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Katai K, Tanaka H, Tatsumi S, Fukunaga Y, Genjida K, Morita K, et al. .: Nicotinamide inhibits sodium-dependent phosphate cotransport activity in rat small intestine. Nephrol Dial Transplant 14: 11951201, 1999 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Liu XY, Yao JR, Xu R, Xu LX, Zhang YF, Lu S, et al. .: Investigation of nicotinamide as more than an anti-phosphorus drug in chronic hemodialysis patients: A single-center, double-blind, randomized, placebo-controlled trial. Ann Transl Med 8: 530, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Malhotra R, Katz R, Hoofnagle A, Bostom A, Rifkin DE, Mcbride R, et al. .: The effect of extended release niacin on markers of mineral metabolism in CKD. Clin J Am Soc Nephrol 13: 3644, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Ix JH, Isakova T, Larive B, Raphael KL, Raj DS, Cheung AK, et al. .: Effects of nicotinamide and lanthanum carbonate on serum phosphate and fibroblast growth factor-23 in CKD: The COMBINE trial. J Am Soc Nephrol 30: 10961108, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Block GA, Rosenbaum DP, Yan A, Chertow GM: Efficacy and safety of tenapanor in patients with hyperphosphatemia receiving maintenance hemodialysis: A randomized phase 3 trial. J Am Soc Nephrol 30: 641652, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Jansz TT, Özyilmaz A, Grooteman MPC, Hoekstra T, Romijn M, Blankestijn PJ, et al. .: Long-term clinical parameters after switching to nocturnal haemodialysis: A Dutch propensity-score-matched cohort study comparing patients on nocturnal haemodialysis with patients on three-times-a-week haemodialysis/haemodiafiltration. BMJ Open 8: e019900, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Wong B, Collister D, Muneer M, Storie D, Courtney M, Lloyd A, et al. .: In-center nocturnal hemodialysis versus conventional hemodialysis: A systematic review of the evidence. Am J Kidney Dis 70: 218234, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Kong X, Zhang L, Zhang L, Chen N, Gu Y, Yu X, et al. .: Mineral and bone disorder in Chinese dialysis patients: A multicenter study. BMC Nephrol 13: 116, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Pagé DE, Knoll GA, Cheung V: The relationship between residual renal function, protein catabolic rate, and phosphate and magnesium levels in peritoneal dialysis patients. Adv Perit Dial 18: 189191, 2002 PubMed

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 637 637 157
Full Text Views 359 359 70
PDF Downloads 281 281 98