Calcium Regulation and Management of Hypo- and Hypercalcemia
View More View Less
  • 1 Nephrology Division, University of São Paulo Medical School, São Paulo, Brazil and Nephrology Division, Tufts Medical Center, Boston, Massachusetts
  • 2 Medical Research Laboratory 16, University of São Paulo Medical School, São Paulo, Brazil
  • 1.

    Friedman PA: Mechanisms of renal calcium transport. Exp Nephrol 8: 343350, 2000 10.1159/000020688 PubMed

  • 2.

    Muto S, Hata M, Taniguchi J, Tsuruoka S, Moriwaki K, Saitou M, et al. : Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci U S A 107: 80118016, 2010 10.1073/pnas.0912901107

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Curry JN, Yu ASL: Paracellular calcium transport in the proximal tubule and the formation of kidney stones. Am J Physiol Renal Physiol 316: F966F969, 2019 10.1152/ajprenal.00519.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Curry JN, Saurette M, Askari M, Pei L, Filla MB, Beggs MR, et al. : Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J Clin Invest 130: 19481960, 2020 10.1172/JCI127750

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, et al. : Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285: 103106, 1999 10.1126/science.285.5424.103 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, et al. : Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79: 949957, 2006 10.1086/508617

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Gong Y, Renigunta V, Himmerkus N, Zhang J, Renigunta A, Bleich M, et al. : Claudin-14 regulates renal Ca(+)(+) transport in response to CaSR signalling via a novel microRNA pathway. EMBO J 31: 19992012, 2012 10.1038/emboj.2012.49

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Thorleifsson G, Holm H, Edvardsson V, Walters GB, Styrkarsdottir U, Gudbjartsson DF, et al. : Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet 41: 926930, 2009 10.1038/ng.404 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Gong Y, Hou J Claudins in barrier and transport function-the kidney. Pflugers Arch 469: 105113, 2017 10.1007/s00424-016-1906-6

  • 10.

    Riccardi D, Valenti G: Localization and function of the renal calcium-sensing receptor. Nat Rev Nephrol 12: 414425, 2016 10.1038/nrneph.2016.59 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Ranieri M: Renal Ca(2+) and water handling in response to calcium sensing receptor signaling: Physiopathological aspects and role of casr-regulated microRNAs. Int J Mol Sci 20: 5341, 2019 10.3390/ijms20215341

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Bazúa-Valenti S, Rojas-Vega L, Castaneda-Bueno M, Barrera-Chimal J, Bautista R, Cervantes-Perez LG, et al. : The calcium-sensing receptor increases activity of the renal NCC through the WNK4-SPAK pathway. J Am Soc Nephrol 29: 18381848, 2018 10.1681/ASN.2017111155

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Talmage RV, Matthews JL, Mobley HT, Lester GE: Calcium homeostasis and bone surface proteins, a postulated vital process for plasma calcium control. J Musculoskelet Neuronal Interact 3: 194200, 2003 PubMed

    • Search Google Scholar
    • Export Citation
  • 14.

    Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R, et al. : FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J 33: 229246, 2014 10.1002/embj.201284188

    • Search Google Scholar
    • Export Citation
  • 15.

    Renkema KY, Nijenhuis T, van der Eerden BC, van der Kemp AW, Weinans H, van Leeuwen JP, et al. : Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice. J Am Soc Nephrol 16: 31883195, 2005 10.1681/ASN.2005060632 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Baron R, Kneissel M: WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19: 179192, 2013 10.1038/nm.3074 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Ryan ZC, Ketha H, McNulty MS, McGee-Lawrence M, Craig TA, Grande JP, et al. : Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proc Natl Acad Sci U S A 110: 61996204, 2013 10.1073/pnas.1221255110

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    van der Wijst J, Tutakhel OAZ, Bos C, Danser AHJ, Hoorn EJ, Hoenderop JGJ, et al. : Effects of a high-sodium/low-potassium diet on renal calcium, magnesium, and phosphate handling. Am J Physiol Renal Physiol 315: F110F122, 2018 10.1152/ajprenal.00379.2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Imenez Silva PH, Katamesh-Benabbas C, Chan K, Pastor Arroyo EM, Knöpfel T, Bettoni C, et al. : The proton-activated ovarian cancer G protein-coupled receptor 1 (OGR1) is responsible for renal calcium loss during acidosis. Kidney Int 97: 920933, 2020 10.1016/j.kint.2019.12.006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Khalil R, Kim NR, Jardi F, Vanderschueren D, Claessens F, Decallonne B: Sex steroids and the kidney: role in renal calcium and phosphate handling. Mol Cell Endocrinol 465: 6172, 2018 10.1016/j.mce.2017.11.011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Hsu YJ, Dimke H, Schoeber JP, Hsu SC, Lin SH, Chu P, et al. : Testosterone increases urinary calcium excretion and inhibits expression of renal calcium transport proteins. Kidney Int 77: 601608, 2010 10.1038/ki.2009.522 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Lin PH, Jian CY, Chou JC, Chen CW, Chen CC, Soong C, et al. : Induction of renal senescence marker protein-30 (SMP30) expression by testosterone and its contribution to urinary calcium absorption in male rats. Sci Rep 6: 32085, 2016 10.1038/srep32085

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Beggs MR, Appel I, Svenningsen P, Skjødt K, Alexander RT, Dimke H: Expression of transcellular and paracellular calcium and magnesium transport proteins in renal and intestinal epithelia during lactation. Am J Physiol Renal Physiol 313: F629F640, 2017 10.1152/ajprenal.00680.2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Rutkowski JM, Pastor J, Sun K, Park SK, Bobulescu IA, Chen CT, et al. : Adiponectin alters renal calcium and phosphate excretion through regulation of klotho expression. Kidney Int 91: 324337, 2017 10.1016/j.kint.2016.09.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Hou J, Renigunta V, Nie M, Sunq A, Himmerkus N, Quintanova C, et al. : Phosphorylated claudin-16 interacts with Trpv5 and regulates transcellular calcium transport in the kidney. Proc Natl Acad Sci U S A 116: 1917619186, 2019 10.1073/pnas.1902042116

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Eckardt KU, Alper SL, Antignac C, Bleyer AJ, Chauveau D, Dahan K, et al. ; Kidney Disease: Improving Global Outcomes: Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management-A KDIGO consensus report. Kidney Int 88: 676683, 2015 10.1038/ki.2015.28 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Kompatscher A, de Baaij JHF, Aboudehen K, Farahani S, van Son LHJ, Milatz S, et al. : Transcription factor HNF1β regulates expression of the calcium-sensing receptor in the thick ascending limb of the kidney. Am J Physiol Renal Physiol 315: F27F35, 2018 10.1152/ajprenal.00601.2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Wu M, Feng Y, Ye GX, Han YC, Wang SS, Ni HF, et al. : Calcium-sensing receptor activation attenuates collagen expression in renal proximal tubular epithelial cells. Am J Physiol Renal Physiol 316: F1006F1015, 2019 10.1152/ajprenal.00413.2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Mai X, Shang J, Liang S, Yu B, Yuan J, Lin Y, et al. : Blockade of orai1 store-operated calcium entry protects against renal fibrosis. J Am Soc Nephrol 27: 30633078, 2016 10.1681/ASN.2015080889

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Hering L, Rahman M, Hoch H, Marko L, Yang G, Reil A, et al. : Alpha2A-adrenoceptors modulate renal sympathetic neurotransmission and protect against hypertensive kidney disease. J Am Soc Nephrol 31: 783798, 2020 10.1681/ASN.2019060599

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Mishima K, Nakasatomi M, Takahashi S, Ikeuchi H, Sakairi T, Kaneko Y, et al. : Attenuation of renal fibrosis after unilateral ureteral obstruction in mice lacking the N-type calcium channel. PLoS One 14: e0223496, 2019 10.1371/journal.pone.0223496

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Brill AL, Ehrlich BE: Polycystin 2: A calcium channel, channel partner, and regulator of calcium homeostasis in ADPKD. Cell Signal 66: 109490, 2020 10.1016/j.cellsig.2019.109490

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Chebib FT, Sussman CR, Wang X, Harris PC, Torres VE: Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat Rev Nephrol 11: 451464, 2015 10.1038/nrneph.2015.39

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Di Mise A, Tamma G, Ranieri M, Centrone M, van den Heuvel L, Mekahli D, et al. : Activation of calcium-sensing receptor increases intracellular calcium and decreases cAMP and mTOR in PKD1 deficient cells. Sci Rep 8: 5704, 2018 10.1038/s41598-018-23732-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Di Mise A, Ranieri M, Centrone M, Venneri M, Tamma G, Valenti D, et al. : Activation of the calcium-sensing receptor corrects the impaired mitochondrial energy status observed in renal polycystin-1 knockdown cells modeling autosomal dominant polycystic kidney disease. Front Mol Biosci 5: 77, 2018 10.3389/fmolb.2018.00077

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Li Z, Zhou J, Li Y, Yang F, Lian X, Liu W: Mitochondrial TRPC3 promotes cell proliferation by regulating the mitochondrial calcium and metabolism in renal polycystin-2 knockdown cells. Int Urol Nephrol 51: 10591070, 2019 10.1007/s11255-019-02149-7 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Ilatovskaya DV, Blass G, Palygin O, Levchenko V, Pavlov TS, Grzybowski MN, et al. : A NOX4/TRPC6 pathway in podocyte calcium regulation and renal damage in diabetic kidney disease. J Am Soc Nephrol 29: 19171927, 2018 10.1681/ASN.2018030280

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Ferretti AP, Bhargava R, Dahan S, Tsokos MG, Tsokos GC: Calcium/calmodulin kinase IV controls the function of both T cells and kidney resident cells. Front Immunol 9: 2113, 2018 10.3389/fimmu.2018.02113

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Ichinose K, Rauen T, Juang YT, Kis-Toth K, Mizui M, Koga T, et al. : Cutting edge: Calcium/calmodulin-dependent protein kinase type IV is essential for mesangial cell proliferation and lupus nephritis. J Immunol 187: 55005504, 2011 10.4049/jimmunol.1102357

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Ichinose K, Ushigusa T, Nishino A, Nakashima Y, Suzuki T, Horai Y, et al. : Lupus nephritis IgG induction of calcium/calmodulin-dependent protein kinase IV expression in podocytes and alteration of their function. Arthritis Rheumatol 68: 944952, 2016 10.1002/art.39499

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Maeda K, Otomo K, Yoshida N, Abu-Asab MS, Ichinose K, Nishino T, et al. : CaMK4 compromises podocyte function in autoimmune and nonautoimmune kidney disease. J Clin Invest 128: 34453459, 2018 10.1172/JCI99507

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Spiegel DM, Brady K: Calcium balance in normal individuals and in patients with chronic kidney disease on low- and high-calcium diets. Kidney Int 81: 11161122, 2012 10.1038/ki.2011.490

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Hill KM, Martin BR, Wastney ME, McCabe GP, Moe SM, Weaver CM, et al. : Oral calcium carbonate affects calcium but not phosphorus balance in stage 3-4 chronic kidney disease. Kidney Int 83: 959966, 2013 10.1038/ki.2012.403

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Moe SM: Rationale to reduce calcium intake in adult patients with chronic kidney disease. Curr Opin Nephrol Hypertens 27:251257, 2018 10.1097/mnh.0000000000000416

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Hill Gallant KM, Spiegel DM: Calcium balance in chronic kidney disease. Curr Osteoporos Rep 15: 214221, 2017 10.1007/s11914-017-0368-x

  • 46.

    Shroff R, Fewtrell M, Heuser A, Kolevica A, Lalayiannis A, McAlister L, et al. : Naturally occurring stable calcium isotope ratios in body compartments provide a novel biomarker of bone mineral balance in children and young adults. J Bone Miner Res 2020 10.1002/jbmr.4158 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Ramalho J, Petrillo EM, Takeichi APM, Moyses RMA, Titan SM: Calcitriol and FGF-23, but neither PTH nor sclerostin, are associated with calciuria in CKD. Int Urol Nephrol 51: 18231829, 2019 10.1007/s11255-019-02215-0 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Taylor JM, Kieneker LM, de Borst MH, Visser ST, Kema IP, Bakker SJL, et al. : Urinary calcium excretion and risk of chronic kidney disease in the general population. Kidney Int Rep 2: 366379, 2017 10.1016/j.ekir.2016.12.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Mizushiri S, Daimon M, Murakami H, Kamba A, Osonoi S, Yamaichi M, et al. : Lower serum calcium levels are a risk factor for a decrease in eGFR in a general non-chronic kidney disease population. Sci Rep 8: 14213, 2018 10.1038/s41598-018-32627-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Frees S, Breuksch I, Haber T, Bauer HK, Chavez-Munoz C, Raven P, et al. : Calcium-sensing receptor (CaSR) promotes development of bone metastasis in renal cell carcinoma. Oncotarget 9: 1576615779, 2018 10.18632/oncotarget.24607

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Rosner MH: Hypocalcemia in a patient with cancer. Clin J Am Soc Nephrol 12: 696699, 2017 10.2215/cjn.13241216 PubMed

  • 52.

    Lau L-H, Cliff ERS, Wong V, Wong H, Torkamani N, Eer A, et al. : Hypocalcaemia following denosumab in prostate cancer: A clinical review. Clin Endocrinol (Oxf) 92: 495502, 2020 10.1111/cen.14169 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Body JJ, Bone HG, de Boer RH, Stopeck A, Van Poznak C, Damião R, et al. : Hypocalcaemia in patients with metastatic bone disease treated with denosumab. Eur J Cancer 51: 18121821, 2015 10.1016/j.ejca.2015.05.016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Ishikawa K, Nagai T, Sakamoto K, Ohara K, Eguro T, Ito H, et al. : High bone turnover elevates the risk of denosumab-induced hypocalcemia in women with postmenopausal osteoporosis. Ther Clin Risk Manag 12: 18311840, 2016 10.2147/TCRM.S123172

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Miyaoka D, Imanishi Y, Ohara M, Hayashi N, Nagata Y, Yamada S, et al. : Impaired residual renal function predicts denosumab-induced serum calcium decrement as well as increment of bone mineral density in non-severe renal insufficiency. Osteoporos Int 30: 241249, 2019 10.1007/s00198-018-4688-1 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Thongprayoon C, Acharya P, Acharya C, Chenbhanich J, Bathini T, Boonpheng B, et al. : Hypocalcemia and bone mineral density changes following denosumab treatment in end-stage renal disease patients: a meta-analysis of observational studies. Osteoporos Int 29: 17371745, 2018 10.1007/s00198-018-4533-6 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Thongprayoon C, Acharya P, Aeddula NR, Torres-Ortiz A, Bathini T, Sharma K, et al. : Effects of denosumab on bone metabolism and bone mineral density in kidney transplant patients: a systematic review and meta-analysis. Arch Osteoporos 14: 35, 2019 10.1007/s11657-019-0587-0 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Nanmoku K, Shinzato T, Kubo T, Shimizu T, Yagisawa T: Effects of denosumab on hypercalcemia and bone mineral density loss in kidney transplant recipients. Clin Nephrol 92: 18, 2019 10.5414/CN109723 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Manohar S, Kompotiatis P, Thongprayoon C, Cheungpasitporn W, Herrmann J, Herrmann SM: Programmed cell death protein 1 inhibitor treatment is associated with acute kidney injury and hypocalcemia: meta-analysis. Nephrol Dial Transplant 34: 108117, 2019 10.1093/ndt/gfy105 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Ho LY, Wong PN, Sin HK, Wong YY, Lo KC, Chan SF, et al. : Risk factors and clinical course of hungry bone syndrome after total parathyroidectomy in dialysis patients with secondary hyperparathyroidism. BMC Nephrol 18: 12, 2017 10.1186/s12882-016-0421-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Ge Y, Yang G, Wang N, Zha X, Yu X, Mao H, et al. : Bone metabolism markers and hungry bone syndrome after parathyroidectomy in dialysis patients with secondary hyperparathyroidism. Int Urol Nephrol 51: 14431449, 2019 10.1007/s11255-019-02217-y PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Jain N, Reilly RF: Hungry bone syndrome. Curr Opin Nephrol Hypertens 26: 250255, 2017 10.1097/MNH.0000000000000327 PubMed

  • 63.

    Ko WC, Liu CL, Lee JJ, Liu TP, Wu CJ, Cheng SP: Osteocalcin is an Independent Predictor for Hungry Bone Syndrome After Parathyroidectomy. World J Surg 44: 795802, 2020 10.1007/s00268-019-05251-0 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Alsafran S, Sherman SK, Dahdaleh FS, Ruhle B, Mercier F, Kaplan EL, et al. : Preoperative calcitriol reduces postoperative intravenous calcium requirements and length of stay in parathyroidectomy for renal-origin hyperparathyroidism. Surgery 165: 151157, 2019 10.1016/j.surg.2018.03.029 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Wang M, Chen B, Zou X, Wei T, Gong R, Zhu J, et al. : A nomogram to predict hungry bone syndrome after parathyroidectomy in patients with secondary hyperparathyroidism. J Surg Res 255: 3341, 2020 10.1016/j.jss.2020.05.036 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Wong J, Fu WH, Lim ELA, Ng CFJ, Choong HL: Hungry bone syndrome after parathyroidectomy in end-stage renal disease patients: review of an alkaline phosphatase-based treatment protocol. Int Urol Nephrol 52: 557564, 2020 10.1007/s11255-020-02387-0 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Floege J, Tsirtsonis K, Iles J, Drueke TB, Chertow GM, Parfrey P: Incidence, predictors and therapeutic consequences of hypocalcemia in patients treated with cinacalcet in the EVOLVE trial. Kidney Int 93: 14751482, 2018 10.1016/j.kint.2017.12.014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Palmer SC, Mavridis D, Johnson DW, Tonelli M, Ruospo M, Strippoli GFM: Comparative effectiveness of calcimimetic agents for secondary hyperparathyroidism in adults: A systematic review and network meta-analysis. Am J Kidney Dis 76: 321330, 2020 10.1053/j.ajkd.2020.02.439 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Louie KS, Erhard C, Wheeler DC, Stenvinkel P, Fouqueray B, Floege J: Cinacalcet-induced hypocalcemia in a cohort of European haemodialysis patients: predictors, therapeutic approaches and outcomes. J Nephrol 33: 803816, 2020 10.1007/s40620-019-00686-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Evenepoel P, Shroff R: Facing cinacalcet-induced hypocalcemia: sit back and relax? Kidney Int 93: 12751277, 2018 10.1016/j.kint.2018.01.038 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Ok E, Asci G, Bayraktaroglu S, Toz H, Ozkahya M, Yilmaz M, et al. : Reduction of dialysate calcium level reduces progression of coronary artery calcification and improves low bone turnover in patients on hemodialysis. J Am Soc Nephrol 27: 24752486, 2016 10.1681/ASN.2015030268

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Yoshikawa M, Takase O, Tsujimura T, Sano E, Hayashi M, Takato T, et al. : Long-term effects of low calcium dialysates on the serum calcium levels during maintenance hemodialysis treatments: A systematic review and meta-analysis. Sci Rep 8: 5310, 2018 10.1038/s41598-018-23658-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Brunelli SM, Sibbel S, Do TP, Cooper K, Bradbury BD: Facility dialysate calcium practices and clinical outcomes among patients receiving hemodialysis: A retrospective observational study. Am J Kidney Dis 66: 655665, 2015 10.1053/j.ajkd.2015.03.038 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Wen Y, Gan H, Li Z, Sun X, Xiong Y, Xia Y: Safety of low-calcium dialysate and its effects on coronary artery calcification in patients undergoing maintenance hemodialysis. Sci Rep 8: 5941, 2018 10.1038/s41598-018-24397-w

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Hamroun A, Lenain R, Bui Nguyen L, Chamley P, Loridant S, Neugebauer Y, et al. : Hypercalcemia is common during Pneumocystis pneumonia in kidney transplant recipients. Sci Rep 9: 12508, 2019 10.1038/s41598-019-49036-w

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Challener D, Saleh AO: A case of hypercalcemia and antibiotic-related acute kidney injury following implantation of antibiotic impregnated calcium sulfate beads. Ann Lab Med 39: 507508, 2019 10.3343/alm.2019.39.5.507

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Friedmann DP, Kurian A, Fitzpatrick RE: Delayed granulomatous reactions to facial cosmetic injections of polymethylmethacrylate microspheres and liquid injectable silicone: A case series. J Cosmet Laser Ther 18: 170173, 2016 10.3109/14764172.2015.1114642 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Manfro AG, Lutzky M, Dora JM, Kalil MAS, Manfro RC: Case reports of hypercalcemia and chronic renal disease due to cosmetic injections of polymethylmethacrylate (PMMA) [published online ahead of print August 10, 2020]. J Bras Nefrol 10.1590/2175-8239-JBN-2020-0044 PubMed

    • Search Google Scholar
    • Export Citation
  • 79.

    Tachamo N, Donato A, Timilsina B, Nazir S, Lohani S, Dhital R, et al. : Hypercalcemia associated with cosmetic injections: a systematic review. Eur J Endocrinol 178: 425430, 2018 10.1530/EJE-17-0938 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Stewart AF, Adler M, Byers CM, Segre GV, Broadus AE: Calcium homeostasis in immobilization: an example of resorptive hypercalciuria. N Engl J Med 306: 11361140, 1982 10.1056/NEJM198205133061903 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Spatz JM, Fields EE, Yu EW, Divieti Pajevic P, Bouxsein ML, Sibonga JD, et al. : Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab 97: E1736E1740, 2012 10.1210/jc.2012-1579

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Osipov B, Emami AJ, Christiansen BA: Systemic bone loss after fracture. Clin Rev Bone Miner Metab 16: 116130, 2018 10.1007/s12018-018-9253-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Zerwekh JE, Ruml LA, Gottschalk F, Pak CY: The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res 13: 15941601, 1998 10.1359/jbmr.1998.13.10.1594 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Wang PL, Meyer MM, Orloff SL, Anderson S: Bone resorption and “relative” immobilization hypercalcemia with prolonged continuous renal replacement therapy and citrate anticoagulation. Am J Kidney Dis 44: 11101114, 2004 10.1053/j.ajkd.2004.09.001 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Madureira RM, Callas SH, Caires RA, Ferraz Crispilho S, Ayroza Galvão PC, Moysés RMA: Continuous renal replacement therapy might mask immobilization-induced hypercalcemia in critically ill patients. Blood Purif 49: 129131, 2020 10.1159/000502679 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 2323 2323 569
Full Text Views 707 707 68
PDF Downloads 696 696 91