1 Institute of Physiology, University of Zurich, Zurich, Switzerland and National Center of Competence in Research, Kidney.CH – Kidney Control of Homeostasis, Switzerland
MohammadJ, ScanniR, BestmannL, HulterHN, KrapfR: A controlled increase in dietary phosphate elevates BP in healthy human subjects. J Am Soc Nephrol29: 2089–2098, 201810.1681/ASN.2017121254
MohammadJ, ScanniR, BestmannL, HulterHN, KrapfR: A controlled increase in dietary phosphate elevates BP in healthy human subjects. J Am Soc Nephrol29: 2089–2098, 201810.1681/ASN.201712125410.1681/ASN.2017121254)| false
ScanniR, vonRotzM, JehleS, HulterHN, KrapfR: The human response to acute enteral and parenteral phosphate loads. J Am Soc Nephrol25: 2730–2739, 201410.1681/ASN.2013101076
ScanniR, vonRotzM, JehleS, HulterHN, KrapfR: The human response to acute enteral and parenteral phosphate loads. J Am Soc Nephrol25: 2730–2739, 201410.1681/ASN.201310107610.1681/ASN.2013101076)| false
BourgeoisS, CapuanoP, StangeG, MühlemannR, MurerH, BiberJ,
et al.
.: The phosphate transporter NaPi-IIa determines the rapid renal adaptation to dietary phosphate intake in mouse irrespective of persistently high FGF23 levels. Pflugers Arch465: 1557–1572, 201310.1007/s00424-013-1298-9PubMed
Pastor-ArroyoEM, KnöpfelT, Imenez SilvaPH, SchnitzbauerU, PoncetN, BiberJ,
et al.
.: Intestinal epithelial ablation of Pit-2/Slc20a2 in mice leads to sustained elevation of vitamin D3 upon dietary restriction of phosphate. Acta Physiol (Oxf)230: e13526, 202010.1111/apha.13526PubMed
IchidaY, OhtomoS, YamamotoT, MuraoN, TsuboiY, KawabeY,
et al.
.: Evidence of an intestinal phosphate transporter alternative to type IIb sodium-dependent phosphate transporter in rats with chronic kidney disease [published online ahead of print September 3, 2020]. Nephrol Dial Transplant10.1093/ndt/gfaa156PubMed
IchidaY, OhtomoS, YamamotoT, MuraoN, TsuboiY, KawabeY, .: Evidence of an intestinal phosphate transporter alternative to type IIb sodium-dependent phosphate transporter in rats with chronic kidney disease [published online ahead of print September 3, 2020]. Nephrol Dial Transplant10.1093/ndt/gfaa156PubMed)| false
WagnerCA: Coming out of the PiTs-novel strategies for controlling intestinal phosphate absorption in patients with CKD. Kidney Int98: 273–275, 202010.1016/j.kint.2020.04.010PubMed
WagnerCA: Coming out of the PiTs-novel strategies for controlling intestinal phosphate absorption in patients with CKD. Kidney Int98: 273–275, 202010.1016/j.kint.2020.04.010PubMed10.1016/j.kint.2020.04.010)| false
MottaSE, Imenez SilvaPH, DaryadelA, HaykirB, Pastor-ArroyoEM, BettoniC,
et al.
.: Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease. Pflugers Arch472: 449–460, 202010.1007/s00424-020-02370-9PubMed
MottaSE, Imenez SilvaPH, DaryadelA, HaykirB, Pastor-ArroyoEM, BettoniC, .: Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease. Pflugers Arch472: 449–460, 202010.1007/s00424-020-02370-9PubMed10.1007/s00424-020-02370-9)| false
AnheimM, Lopez-SanchezU, GiovanniniD, RichardAC, TouhamiJ, N'GuyenL,
et al.
.: XPR1 mutations are a rare cause of primary familial brain calcification. J Neurol263: 1559–1564, 201610.1007/s00415-016-8166-4 10.1007/s00415-016-8166-4
AnsermetC, MoorMB, CentenoG, AubersonM, HuDZ, BaronR,
et al.
.: Renal fanconi syndrome and hypophosphatemic rickets in the absence of xenotropic and polytropic retroviral receptor in the nephron. J Am Soc Nephrol28: 1073–1078, 201710.1681/ASN.2016070726
AnsermetC, MoorMB, CentenoG, AubersonM, HuDZ, BaronR, .: Renal fanconi syndrome and hypophosphatemic rickets in the absence of xenotropic and polytropic retroviral receptor in the nephron. J Am Soc Nephrol28: 1073–1078, 201710.1681/ASN.201607072610.1681/ASN.2016070726)| false
BacicD, LehirM, BiberJ, KaisslingB, MurerH, WagnerCA: The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int69: 495–503, 200610.1038/sj.ki.5000148
BacicD, LehirM, BiberJ, KaisslingB, MurerH, WagnerCA: The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int69: 495–503, 200610.1038/sj.ki.500014810.1038/sj.ki.5000148)| false
MichigamiT, KawaiM, YamazakiM, OzonoK: Phosphate as a signaling molecule and its sensing mechanism. Physiol Rev98: 2317–2348, 201810.1152/physrev.00022.2017PubMed
MichigamiT, KawaiM, YamazakiM, OzonoK: Phosphate as a signaling molecule and its sensing mechanism. Physiol Rev98: 2317–2348, 201810.1152/physrev.00022.2017PubMed10.1152/physrev.00022.2017)| false
ChandeS, BergwitzC: Role of phosphate sensing in bone and mineral metabolism. Nat Rev Endocrinol14: 637–655, 201810.1038/s41574-018-0076-3PubMed10.1038/s41574-018-0076-3)| false
LedererE, WagnerCA: Clinical aspects of the phosphate transporters NaPi-IIa and NaPi-IIb: Mutations and disease associations. Pflugers Arch471: 137–148, 201910.1007/s00424-018-2246-5PubMed
LedererE, WagnerCA: Clinical aspects of the phosphate transporters NaPi-IIa and NaPi-IIb: Mutations and disease associations. Pflugers Arch471: 137–148, 201910.1007/s00424-018-2246-5PubMed10.1007/s00424-018-2246-5)| false
MagenD, BergerL, CoadyMJ, IlivitzkiA, MilitianuD, TiederM,
et al.
.: A loss-of-function mutation in NaPi-IIa and renal Fanconi’s syndrome. N Engl J Med362: 1102–1109, 201010.1056/NEJMoa0905647
DasguptaD, WeeMJ, ReyesM, LiY, SimmPJ, SharmaA,
et al.
.: Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis. J Am Soc Nephrol25: 2366–2375, 201410.1681/ASN.2013101085
DasguptaD, WeeMJ, ReyesM, LiY, SimmPJ, SharmaA, .: Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis. J Am Soc Nephrol25: 2366–2375, 201410.1681/ASN.201310108510.1681/ASN.2013101085)| false
Haito-SuginoS, ItoM, OhiA, ShiozakiY, KangawaN, NishiyamaT,
et al.
.: Processing and stability of type IIc sodium-dependent phosphate cotransporter mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria. Am J Physiol Cell Physiol302: C1316–C1330, 201210.1152/ajpcell.00314.2011
Haito-SuginoS, ItoM, OhiA, ShiozakiY, KangawaN, NishiyamaT, .: Processing and stability of type IIc sodium-dependent phosphate cotransporter mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria. Am J Physiol Cell Physiol302: C1316–C1330, 201210.1152/ajpcell.00314.201110.1152/ajpcell.00314.2011)| false
KottgenA, PattaroC, BogerCA, FuchsbergerC, OldenM, GlazerNL,
et al.
.: New loci associated with kidney function and chronic kidney disease. Nat Genet42: 376–384, 201010.1038/ng.568
KottgenA, PattaroC, BogerCA, FuchsbergerC, OldenM, GlazerNL, .: New loci associated with kidney function and chronic kidney disease. Nat Genet42: 376–384, 201010.1038/ng.56810.1038/ng.568)| false
KottgenA, GlazerNL, DehghanA, HwangSJ, KatzR, LiM,
et al.
.: Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet41: 712–717, 200910.1038/ng.377
KottgenA, GlazerNL, DehghanA, HwangSJ, KatzR, LiM, .: Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet41: 712–717, 200910.1038/ng.37710.1038/ng.377)| false
OddssonA, SulemP, HelgasonH, EdvardssonVO, ThorleifssonG, SveinbjornssonG,
et al.
.: Common and rare variants associated with kidney stones and biochemical traits. Nat Commun6: 7975, 201510.1038/ncomms8975
BhandaruM, KempeDS, RotteA, CapuanoP, PathareG, SopjaniM,
et al.
.: Decreased bone density and increased phosphaturia in gene-targeted mice lacking functional serum- and glucocorticoid-inducible kinase 3. Kidney Int80: 61–67, 201110.1038/ki.2011.67
MarcucciG, BrandiML: Congenital conditions of hypophosphatemia expressed in adults [published online ahead of print May 14, 2020]. Calcif Tissue Int10.1007/s00223-020-00695-2PubMed
MarcucciG, BrandiML: Congenital conditions of hypophosphatemia expressed in adults [published online ahead of print May 14, 2020]. Calcif Tissue Int10.1007/s00223-020-00695-2PubMed)| false
PayneRB: Renal tubular reabsorption of phosphate (TmP/GFR): Indications and interpretation. Ann Clin Biochem35: 201–206, 199810.1177/000456329803500203PubMed
VervloetMG, SezerS, MassyZA, JohanssonL, CozzolinoM, FouqueD; ERA–EDTA Working Group on Chronic Kidney Disease–Mineral and Bone Disorders and the European Renal Nutrition Working Group: The role of phosphate in kidney disease. Nat Rev Nephrol13: 27–38, 201710.1038/nrneph.2016.164PubMed
VervloetMG, SezerS, MassyZA, JohanssonL, CozzolinoM, FouqueD; ERA–EDTA Working Group on Chronic Kidney Disease–Mineral and Bone Disorders and the European Renal Nutrition Working Group: The role of phosphate in kidney disease. Nat Rev Nephrol13: 27–38, 201710.1038/nrneph.2016.164PubMed10.1038/nrneph.2016.164)| false
YooKD, KangS, ChoiY, YangSH, HeoNJ, ChinHJ,
et al.
.: Sex, age, and the association of serum phosphorus with all-cause mortality in adults with normal kidney function. Am J Kidney Dis67: 79–88, 201610.1053/j.ajkd.2015.06.027
YooKD, KangS, ChoiY, YangSH, HeoNJ, ChinHJ, .: Sex, age, and the association of serum phosphorus with all-cause mortality in adults with normal kidney function. Am J Kidney Dis67: 79–88, 201610.1053/j.ajkd.2015.06.02710.1053/j.ajkd.2015.06.027)| false
TonelliM, SacksF, PfefferM, GaoZ, CurhanG; Cholesterol and Recurrent Events Trial Investigators: Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation112: 2627–2633, 200510.1161/CIRCULATIONAHA.105.553198PubMed
TonelliM, SacksF, PfefferM, GaoZ, CurhanG; Cholesterol and Recurrent Events Trial Investigators: Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation112: 2627–2633, 200510.1161/CIRCULATIONAHA.105.553198PubMed10.1161/CIRCULATIONAHA.105.553198)| false
DhingraR, GonaP, BenjaminEJ, WangTJ, AragamJ, D'AgostinoRB, Sr.,
et al.
.: Relations of serum phosphorus levels to echocardiographic left ventricular mass and incidence of heart failure in the community. Eur J Heart Fail12: 812–818, 201010.1093/eurjhf/hfq106
DhingraR, GonaP, BenjaminEJ, WangTJ, AragamJ, D'AgostinoRB, Sr., .: Relations of serum phosphorus levels to echocardiographic left ventricular mass and incidence of heart failure in the community. Eur J Heart Fail12: 812–818, 201010.1093/eurjhf/hfq10610.1093/eurjhf/hfq106)| false
SimJJ, BhandariSK, SmithN, ChungJ, LiuIL, JacobsenSJ,
et al.
.: Phosphorus and risk of renal failure in subjects with normal renal function. Am J Med126: 311–318, 201310.1016/j.amjmed.2012.08.018PubMed
SimJJ, BhandariSK, SmithN, ChungJ, LiuIL, JacobsenSJ, .: Phosphorus and risk of renal failure in subjects with normal renal function. Am J Med126: 311–318, 201310.1016/j.amjmed.2012.08.018PubMed10.1016/j.amjmed.2012.08.018)| false
ChangAR, LazoM, AppelLJ, GutierrezOM, GramsME: High dietary phosphorus intake is associated with all-cause mortality: Results from NHANES III. Am J Clin Nutr99: 320–327, 201410.3945/ajcn.113.073148
ChangAR, LazoM, AppelLJ, GutierrezOM, GramsME: High dietary phosphorus intake is associated with all-cause mortality: Results from NHANES III. Am J Clin Nutr99: 320–327, 201410.3945/ajcn.113.07314810.3945/ajcn.113.073148)| false
PavikI, JaegerP, EbnerL, WagnerCA, PetzoldK, SpichtigD,
et al.
.: Secreted Klotho and FGF23 in chronic kidney disease stage 1 to 5: A sequence suggested from a cross-sectional study. Nephrol Dial Transplant28: 352–359, 201310.1093/ndt/gfs460
HuMC, ShiizakiK, Kuro-oM, MoeOW: Fibroblast growth factor 23 and Klotho: Physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol75: 503–533, 201310.1146/annurev-physiol-030212-183727PubMed
HuMC, ShiizakiK, Kuro-oM, MoeOW: Fibroblast growth factor 23 and Klotho: Physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol75: 503–533, 201310.1146/annurev-physiol-030212-183727PubMed10.1146/annurev-physiol-030212-183727)| false
DhayatNA, AckermannD, PruijmM, PonteB, EhretG, GuessousI,
et al.
.: Fibroblast growth factor 23 and markers of mineral metabolism in individuals with preserved renal function. Kidney Int90: 648–657, 201610.1016/j.kint.2016.04.024
MarthiA, DonovanK, HaynesR, WheelerDC, BaigentC, RooneyCM,
et al.
.: Fibroblast growth factor-23 and risks of cardiovascular and noncardiovascular diseases: A meta-analysis. J Am Soc Nephrol29: 2015–2027, 201810.1681/ASN.2017121334
WagnerCA, Rubio-AliagaI, Egli-SpichtigD: Fibroblast growth factor 23 in chronic kidney disease: What is its role in cardiovascular disease?Nephrol Dial Transplant34: 1986–1990, 201910.1093/ndt/gfz044PubMed
WagnerCA, Rubio-AliagaI, Egli-SpichtigD: Fibroblast growth factor 23 in chronic kidney disease: What is its role in cardiovascular disease?Nephrol Dial Transplant34: 1986–1990, 201910.1093/ndt/gfz044PubMed10.1093/ndt/gfz044)| false
Pastor-ArroyoEM, GehringN, KrudewigC, CostantinoS, BettoniC, KnöpfelT,
et al.
.: The elevation of circulating fibroblast growth factor 23 without kidney disease does not increase cardiovascular disease risk. Kidney Int94: 49–59, 201810.1016/j.kint.2018.02.017PubMed