Primary Nephritic Syndromes
By:
Wooin Ahn Division of Nephrology, Columbia University, Vagelos College of Physicians and Surgeons New York, New York

Search for other papers by Wooin Ahn in
Current site
Google Scholar
PubMed
Close
,
Jonathan J. Hogan Division of Nephrology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania

Search for other papers by Jonathan J. Hogan in
Current site
Google Scholar
PubMed
Close
, and
Ali G. Gharavi Division of Nephrology, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York

Search for other papers by Ali G. Gharavi in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1.

    Kiryluk K , Li Y , Sanna-Cherchi S , Rohanizadegan M , Suzuki H , Eitner F , et al.: Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet 8: e1002765, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Yu GZ , Guo L , Dong JF , Shi SF , Liu LJ , Wang JW , et al.: Persistent Hematuria and Kidney Disease Progression in IgA Nephropathy: A Cohort Study. Am J Kidney Dis 76: 9099, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Rodrigues JC , Haas M , Reich HN : IgA nephropathy. Clin J Am Soc Nephrol 12: 677686, 2017 PubMed

  • 4.

    Barratt J , Feehally J : Treatment of IgA nephropathy. Kidney Int 69: 19341938, 2006 PubMed

  • 5.

    Herlitz LC , Bomback AS , Stokes MB , Radhakrishnan J , D’Agati VD , Markowitz GS : IgA nephropathy with minimal change disease. Clin J Am Soc Nephrol 9: 10331039, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Mariani LH , Bomback AS , Canetta PA , Flessner MF , Helmuth M , Hladunewich MA , et al.; CureGN Consortium: CureGN study rationale, design, and methods: Establishing a large prospective observational study of glomerular disease. Am J Kidney Dis 73: 218229, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Selewski DT , Ambruzs JM , Appel GB , Bomback AS , Matar RB , Cai Y , et al.; CureGN Consortium: Clinical characteristics and treatment patterns of children and adults with IgA nephropathy or IgA vasculitis: Findings from the CureGN study. Kidney Int Rep 3: 13731384, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Delbarba E , Marasa M , Canetta PA , Piva SE , Chatterjee D , Kil BH , et al.; CureGN Consortium: Persistent disease activity in patients with long-standing glomerular disease. Kidney Int Rep 5: 860871, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9,

    Chen S , Tang Z , Xiang H , Li X , Chen H , Zhang H , et al.: Etiology and outcome of crescentic glomerulonephritis from a single center in China: A 10-year review. Am J Kidney Dis 67: 376383, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Shima Y , Nakanishi K , Hama T , Mukaiyama H , Sato M , Tanaka Y , et al.: Crescentic IgA nephropathy in children. Pediatr Nephrol 35: 10051014, 2020 PubMed

  • 11.

    Bellur SS , Lepeytre F , Vorobyeva O , Troyanov S , Cook HT , Roberts IS ; International IgA Nephropathy Working Group: Evidence from the Oxford classification cohort supports the clinical value of subclassification of focal segmental glomerulosclerosis in IgA nephropathy. Kidney Int 91: 235243, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Cattran DC , Coppo R , Cook HT , Feehally J , Roberts ISD , Troyanov S , et al.; Working Group of the International IgA Nephropathy Network and the Renal Pathology Society: The Oxford classification of IgA nephropathy: Rationale, clinicopathological correlations, and classification. Kidney Int 76: 534545, 2009 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Trimarchi H , Barratt J , Cattran DC , Cook HT , Coppo R , Haas M , et al.; IgAN Classification Working Group of the International IgA Nephropathy Network and the Renal Pathology Society; Conference Participants: Oxford classification of IgA nephropathy 2016: An update from the IgA Nephropathy Classification Working Group. Kidney Int 91: 10141021, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Jullien P , Laurent B , Berthoux F , Masson I , Dinic M , Claisse G , et al.: Repeat renal biopsy improves the Oxford classification-based prediction of immunoglobulin A nephropathy outcome. Nephrol Dial Transplant 35: 11791186, 2020 PubMed.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Cai Q , Shi S , Wang S , Ren Y , Hou W , Liu L , et al.: Microangiopathic lesions in IgA nephropathy: A cohort study. Am J Kidney Dis 74: 629639, 2019 PubMed

  • 16.

    Satoskar AA , Suleiman S , Ayoub I , Hemminger J , Parikh S , Brodsky SV , et al.: Staphylococcus infection-associated GN: Spectrum of IgA staining and prevalence of ANCA in a single-center cohort. Clin J Am Soc Nephrol 12: 3949, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Satoskar AA , Molenda M , Scipio P , Shim R , Zirwas M , Variath RS , et al.: Henoch-Schönlein purpura-like presentation in IgA-dominant Staphylococcus infection - associated glomerulonephritis - a diagnostic pitfall. Clin Nephrol 79: 302312, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Brodsky SV , Nadasdy T , Cassol C , Satoskar A : IgA staining patterns differentiate between IgA nephropathy and IgA-dominant infection-associated glomerulonephritis. Kidney Int Rep 5: 909911, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Reily C , Stewart TJ , Renfrow MB , Novak J : Glycosylation in health and disease. Nat Rev Nephrol 15: 346366, 2019 PubMed

  • 20.

    Novak J , Barratt J , Julian BA , Renfrow MB : Aberrant glycosylation of the IgA1 molecule in IgA nephropathy. Semin Nephrol 38: 461476, 2018 PubMed

  • 21.

    Gharavi AG , Moldoveanu Z , Wyatt RJ , Barker CV , Woodford SY , Lifton RP , et al.: Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol 19: 10081014, 2008 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kiryluk K , Li Y , Moldoveanu Z , Suzuki H , Reily C , Hou P , et al.: GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet 13: e1006609, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Gale DP , Molyneux K , Wimbury D , Higgins P , Levine AP , Caplin B , et al.: Galactosylation of IgA1 is associated with common variation in C1GALT1. J Am Soc Nephrol 28: 21582166, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kiryluk K , Li Y , Scolari F , Sanna-Cherchi S , Choi M , Verbitsky M , et al.: Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet 46: 11871196, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Bhutani G , Nasr SH , Said SM , Sethi S , Fervenza FC , Morice WG , et al.: Hematologic characteristics of proliferative glomerulonephritides with nonorganized monoclonal immunoglobulin deposits. Mayo Clin Proc 90: 587596, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Thompson A , Carroll K , Inker LA , Floege J , Perkovic V , Boyer-Suavet S , et al.: Proteinuria reduction as a surrogate end point in trials of IgA nephropathy. Clin J Am Soc Nephrol 14: 469481, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Knoop T , Vikse BE , Mwakimonga A , Leh S , Bjørneklett R : Long-term outcome in 145 patients with assumed benign immunoglobulin A nephropathy. Nephrol Dial Transplant 32: 18411850, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bobart SA , Alexander MP , Shawwa K , Vaughan LE , Ghamrawi R , Sethi S , et al.: The association of microhematuria with mesangial hypercellularity, endocapillary hypercellularity, crescent score and renal outcomes in immunoglobulin A nephropathy. Nephrol Dial Transplant: gfz267, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Sim JJ , Bhandari SK , Batech M , Hever A , Harrison TN , Shu YH , et al.: End-stage renal disease and mortality outcomes across different glomerulonephropathies in a large diverse US population. Mayo Clin Proc 93: 167178, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Barbour SJ , Coppo R , Zhang H , Liu ZH , Suzuki Y , Matsuzaki K , et al.; International IgA Nephropathy Network: Evaluating a new international risk-prediction tool in IgA nephropathy. JAMA Intern Med 179: 942952, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Coppo R , D’Arrigo G , Tripepi G , Russo ML , Roberts ISD , Bellur S , et al.; ERA-EDTA Immunonephrology Working Group: Is there long-term value of pathology scoring in immunoglobulin A nephropathy? A validation study of the Oxford classification for IgA nephropathy (VALIGA) update. Nephrol Dial Transplant 35: 10021009, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Jarrick S , Lundberg S , Welander A , Carrero JJ , Höijer J , Bottai M , et al.: Mortality in IgA nephropathy: A nationwide population-based cohort study. J Am Soc Nephrol 30: 866876, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Praga M , Gutiérrez E , González E , Morales E , Hernández E : Treatment of IgA nephropathy with ACE inhibitors: A randomized and controlled trial. J Am Soc Nephrol 14: 15781583, 2003 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Hirano K , Kawamura T , Tsuboi N , Okonogi H , Miyazaki Y , Ikeda M , et al.: The predictive value of attenuated proteinuria at 1 year after steroid therapy for renal survival in patients with IgA nephropathy. Clin Exp Nephrol 17: 555562, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Russo E , Verzola D , Salvidio G , Bonino B , Picciotto D , Drovandi S , et al.: Long-term blood pressure behavior and progression to end-stage renal disease in patients with immunoglobulin A nephropathy: A single-center observational study in Italy. J Hypertens 38: 925935, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Kanno Y , Okada H , Saruta T , Suzuki H : Blood pressure reduction associated with preservation of renal function in hypertensive patients with IgA nephropathy: A 3-year follow-up. Clin Nephrol 54: 360365, 2000 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Rauen T , Eitner F , Fitzner C , Sommerer C , Zeier M , Otte B , et al.; STOP-IgAN Investigators: Intensive supportive care plus immunosuppression in IgA nephropathy. N Engl J Med 373: 22252236, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Rauen T , Wied S , Fitzner C , Eitner F , Sommerer C , Zeier M , et al.; STOP-IgAN Investigators: After ten years of follow-up, no difference between supportive care plus immunosuppression and supportive care alone in IgA nephropathy. Kidney Int 98: 10441052, 2020 , 2020 PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Lv J , Zhang H , Wong MG , Jardine MJ , Hladunewich M , Jha V , et al.; TESTING Study Group: Effect of oral methylprednisolone on clinical outcomes in patients with IgA nephropathy: The TESTING randomized clinical trial. JAMA 318: 432442, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Fellström BC , Barratt J , Cook H , Coppo R , Feehally J , de Fijter JW , et al.; NEFIGAN Trial Investigators: Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): A double-blind, randomised, placebo-controlled phase 2b trial. Lancet 389: 21172127, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Zand L , Canetta P , Lafayette R , Aslam N , Jan N , Sethi S , et al.: An open-label pilot study of adrenocorticotrophic hormone in the treatment of IgA nephropathy at high risk of progression. kidney int rep 5: 5865, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Xiaowei L , Bo W , Li L , Peng Z : Comparison of the effects of valsartan plus activated vitamin D versus valsartan alone in IgA nephropathy with moderate proteinuria. Int Urol Nephrol 52: 129136, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Allen PJ , Chadban SJ , Craig JC , Lim WH , Allen RDM , Clayton PA , et al.: Recurrent glomerulonephritis after kidney transplantation: Risk factors and allograft outcomes. Kidney Int 92: 461469, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    O’Shaughnessy MM , Liu S , Montez-Rath ME , Lenihan CR , Lafayette RA , Winkelmayer WC : Kidney transplantation outcomes across GN subtypes in the United States. J Am Soc Nephrol 28: 632644, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Kousios A , Duncan N , Charif R , Tam FWK , Levy J , Cook HT , et al.: Autologous stem cell transplant for the treatment of type I crystal cryoglobulinemic glomerulonephritis caused by monoclonal gammopathy of renal significance (MGRS). Kidney Int Rep 4: 13421348, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Smith RJH , Appel GB , Blom AM , Cook HT , D’Agati VD , Fakhouri F , et al.: C3 glomerulopathy: Understanding a rare complement-driven renal disease. Nat Rev Nephrol 15: 129143, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Avasare RS , Canetta PA , Bomback AS , Marasa M , Caliskan Y , Ozluk Y , et al.: Mycophenolate mofetil in combination with steroids for treatment of C3 glomerulopathy: A case series. Clin J Am Soc Nephrol 13: 406413, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Bomback AS , Santoriello D , Avasare RS , Regunathan-Shenk R , Canetta PA , Ahn W , et al.: C3 glomerulonephritis and dense deposit disease share a similar disease course in a large United States cohort of patients with C3 glomerulopathy. Kidney Int 93: 977985, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Medjeral-Thomas N , Malik TH , Patel MP , Toth T , Cook HT , Tomson C , et al.: A novel CFHR5 fusion protein causes C3 glomerulopathy in a family without Cypriot ancestry. Kidney Int 85: 933937, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Ravindran A , Fervenza FC , Smith RJH , Sethi S : C3 glomerulonephritis with a severe crescentic phenotype. Pediatr Nephrol 32: 16251633, 2017 PubMed

  • 51.

    Riedl M , Thorner P , Licht C : C3 glomerulopathy. Pediatr Nephrol 32: 4357, 2017 PubMed

  • 52.

    Togarsimalemath SK , Sethi SK , Duggal R , Le Quintrec M , Jha P , Daniel R , et al.: A novel CFHR1-CFHR5 hybrid leads to a familial dominant C3 glomerulopathy. Kidney Int 92: 876887, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Tortajada A , Yébenes H , Abarrategui-Garrido C , Anter J , García-Fernández JM , Martínez-Barricarte R , et al.: C3 glomerulopathy-associated CFHR1 mutation alters FHR oligomerization and complement regulation. J Clin Invest 123: 24342446, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Wang X , Van Lookeren Campagne M , Katschke KJ Jr , Gullipalli D , Miwa T , Ueda Y , et al.: Prevention of fatal C3 glomerulopathy by recombinant complement receptor of the Ig superfamily. J Am Soc Nephrol 29: 20532059, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Andeen NK , Yang HY , Dai DF , MacCoss MJ , Smith KD : DnaJ homolog subfamily B member 9 is a putative autoantigen in fibrillary GN. J Am Soc Nephrol 29: 231239, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Hogan JJ , Alexander MP , Leung N : Dysproteinemia and the kidney: Core curriculum 2019. Am J Kidney Dis 74: 822836, 2019 PubMed

  • 57.

    Ravindran A , Fervenza FC , Smith RJH , Sethi S : C3 glomerulopathy associated with monoclonal Ig is a distinct subtype. Kidney Int 94: 178186, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Levine AP , Chan MMY , Sadeghi-Alavijeh O , Wong EKS , Cook HT , Ashford S , et al.; MPGN/DDD/C3 Glomerulopathy Rare Disease Group; NIHR BioResource: Large-scale whole-genome sequencing reveals the genetic architecture of primary membranoproliferative GN and C3 glomerulopathy. J Am Soc Nephrol 31: 365373, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Chauvet S , Frémeaux-Bacchi V , Petitprez F , Karras A , Daniel L , Burtey S , et al.: Treatment of B-cell disorder improves renal outcome of patients with monoclonal gammopathy-associated C3 glomerulopathy. Blood 129: 14371447, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Vivarelli M , Pasini A , Emma F : Eculizumab for the treatment of dense-deposit disease. N Engl J Med 366: 11631165, 2012 PubMed

  • 61.

    Bomback AS , Smith RJ , Barile GR , Zhang Y , Heher EC , Herlitz L , et al.: Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin J Am Soc Nephrol 7: 748756, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Ruggenenti P , Daina E , Gennarini A , Carrara C , Gamba S , Noris M , et al.; EAGLE Study Group: C5 convertase blockade in membranoproliferative glomerulonephritis: A Single-Arm Clinical Trial. Am J Kidney Dis 74: 224238, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Le Quintrec M , Lapeyraque AL , Lionet A , Sellier-Leclerc AL , Delmas Y , Baudouin V , et al.: Patterns of clinical response to eculizumab in patients with C3 glomerulopathy. Am J Kidney Dis 72: 8492, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Rabasco C , Cavero T , Román E , Rojas-Rivera J , Olea T , Espinosa M , et al.; Spanish Group for the Study of Glomerular Diseases (GLOSEN): Effectiveness of mycophenolate mofetil in C3 glomerulonephritis. Kidney Int 88: 11531160, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Rovin BH , Caster DJ , Cattran DC , Gibson KL , Hogan JJ , Moeller MJ , et al.; Conference Participants: Management and treatment of glomerular diseases (part 2): Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 95: 281295, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Békássy ZD , Kristoffersson AC , Rebetz J , Tati R , Olin AI , Karpman D : Aliskiren inhibits renin-mediated complement activation. Kidney Int 94: 689700, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Leung N , Bridoux F , Batuman V , Chaidos A , Cockwell P , D’Agati VD , et al.: The evaluation of monoclonal gammopathy of renal significance: A consensus report of the International Kidney and Monoclonal Gammopathy Research Group. Nat Rev Nephrol 15: 4559, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Jokiranta TS , Solomon A , Pangburn MK , Zipfel PF , Meri S : Nephritogenic lambda light chain dimer: A unique human miniautoantibody against complement factor H. J Immunol 163: 45904596, 1999 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Meri S , Koistinen V , Miettinen A , Törnroth T , Seppälä IJ : Activation of the alternative pathway of complement by monoclonal lambda light chains in membranoproliferative glomerulonephritis. J Exp Med 175: 939950, 1992 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Larsen CP , Messias NC , Walker PD , Fidler ME , Cornell LD , Hernandez LH , et al.: Membranoproliferative glomerulonephritis with masked monotypic immunoglobulin deposits. Kidney Int 88: 867873, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Chauvet S , Roumenina LT , Aucouturier P , Marinozzi MC , Dragon-Durey MA , Karras A , et al.: Both monoclonal and polyclonal immunoglobulin contingents mediate complement activation in monoclonal gammopathy associated-C3 glomerulopathy [published online ahead of print Oct 2, 2018]. Front Immunol doi: 10.2289/fimmu.2018.02260. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Zand L , Lorenz EC , Cosio FG , Fervenza FC , Nasr SH , Gandhi MJ , et al.: Clinical findings, pathology, and outcomes of C3GN after kidney transplantation. J Am Soc Nephrol 25: 11101117, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Regunathan-Shenk R , Avasare RS , Ahn W , Canetta PA , Cohen DJ , Appel GB , et al.: Kidney transplantation in C3 glomerulopathy: A case series. Am J Kidney Dis 73: 316323, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Loirat C , Fakhouri F , Ariceta G , Besbas N , Bitzan M , Bjerre A , et al.; HUS International: An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr Nephrol 31: 1539, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Scully M , Cataland S , Coppo P , de la Rubia J , Friedman KD , Kremer Hovinga J , et al.; International Working Group for Thrombotic Thrombocytopenic Purpura: Consensus on the standardization of terminology in thrombotic thrombocytopenic purpura and related thrombotic microangiopathies. J Thromb Haemost 15: 312322, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Baghli S , Abendroth C , Farooq U , Schaub JA : Atypical presentation of pregnancy-related hemolytic uremic syndrome. Am J Kidney Dis 72: 451456, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Sallée M , Ismail K , Fakhouri F , Vacher-Coponat H , Moussi-Francés J , Frémaux-Bacchi V , et al.: Thrombocytopenia is not mandatory to diagnose haemolytic and uremic syndrome. BMC Nephrol 14: 3, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    De Serres SA , Isenring P : Athrombocytopenic thrombotic microangiopathy, a condition that could be overlooked based on current diagnostic criteria. Nephrol Dial Transplant 24: 10481050, 2009 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Noris M , Remuzzi G : Cardiovascular complications in atypical haemolytic uraemic syndrome. Nat Rev Nephrol 10: 174180, 2014 PubMed

  • 80.

    Fakhouri F , Vercel C , Frémeaux-Bacchi V : Obstetric nephrology: AKI and thrombotic microangiopathies in pregnancy. Clin J Am Soc Nephrol 7: 21002106, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Fakhouri F , Roumenina L , Provot F , Sallée M , Caillard S , Couzi L , et al.: Pregnancy-associated hemolytic uremic syndrome revisited in the era of complement gene mutations. J Am Soc Nephrol 21: 859867, 2010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Huerta A , Arjona E , Portoles J , Lopez-Sanchez P , Rabasco C , Espinosa M , et al.: A retrospective study of pregnancy-associated atypical hemolytic uremic syndrome. Kidney Int 93: 450459, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Gaggl M , Aigner C , Csuka D , Szilágyi Á , Prohászka Z , Kain R , et al.: Maternal and fetal outcomes of pregnancies in women with atypical hemolytic uremic syndrome. J Am Soc Nephrol 29: 10201029, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Ramachandran R , Nayak S , Anakutti HP , Yadav AK , Nada R , Jain V , et al.: Postpartum renal cortical necrosis is associated with atypical hemolytic uremic syndrome in developing countries. Kidney Int Rep 4: 420424, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Gavriilaki E , Brodsky RA : Complementopathies and precision medicine. J Clin Invest 130: 21522163, 2020 PubMed

  • 86.

    Goodship TH , Cook HT , Fakhouri F , Fervenza FC , Frémeaux-Bacchi V , Kavanagh D , et al.; Conference Participants: Atypical hemolytic uremic syndrome and C3 glomerulopathy: Conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) controversies conference. Kidney Int 91: 539551, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Noris M , Caprioli J , Bresin E , Mossali C , Pianetti G , Gamba S , et al.: Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol 5: 18441859, 2010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    de Jong S , Volokhina EB , de Breuk A , Nilsson SC , de Jong EK , van der Kar NCAJ , et al.: Effect of rare coding variants in the CFI gene on factor I expression levels. Hum Mol Genet 29: 23132324, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Ravindran A , Go RS , Fervenza FC , Sethi S : Thrombotic microangiopathy associated with monoclonal gammopathy. Kidney Int 91: 691698, 2017 PubMed

  • 90.

    Legendre CM , Licht C , Muus P , Greenbaum LA , Babu S , Bedrosian C , et al.: Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med 368: 21692181, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Cassol CA , Brodsky SV , Satoskar AA , Blissett AR , Cataland S , Nadasdy T : Eculizumab deposits in vessel walls in thrombotic microangiopathy. Kidney Int 96: 761768, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Duval A , Olagne J , Cognard N , Gautier Vargas G , Joly M , Perrin P , et al.: Pregnancy in a kidney transplant woman under treatment with eculizumab for atypical hemolytic uremic syndrome: Is it safe? Kidney Int Rep 4: 733739, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Cheung CK , Nettleton KJ , Williams ML , Page AS , Littler Y , Goodlife A , et al.: Use of eculizumab during pregnancy in kidney transplant recipients with atypical HUS. Kidney Int Rep 4: 1658, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Fakhouri F , Fila M , Provôt F , Delmas Y , Barbet C , Châtelet V , et al.: Pathogenic variants in complement genes and risk of atypical hemolytic uremic syndrome relapse after eculizumab discontinuation. Clin J Am Soc Nephrol 12: 5059, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Menne J : Is ravulizumab the new treatment of choice for atypical hemolytic uremic syndrome (aHUS)? Kidney Int 97: 11061108, 2020 PubMed

  • 96.

    Plasse RA , Nee R , Olson SW : Aliskiren as an adjunct therapy for atypical hemolytic uremic syndrome. Clin Kidney J 13: 3941, 2019 PubMed

  • 97.

    Zuber J , Frimat M , Caillard S , Kamar N , Gatault P , Petitprez F , et al.: Use of highly individualized complement blockade has revolutionized clinical outcomes after kidney transplantation and renal epidemiology of atypical hemolytic uremic syndrome. J Am Soc Nephrol 30: 24492463, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 3132 2962 856
Full Text Views 500 176 19
PDF Downloads 664 226 31