Primary Nephrotic Syndrome
View More View Less
  • 1 Division of Nephrology and Hypertension, University of Minnesota, Minneapolis, Minnesota
  • 2 Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
  • 1.

    Glassock RJ, Fervenza FC, Hebert L, Cameron JS: Nephrotic syndrome redux. Nephrol Dial Transplant 30: 1217, 2015 PubMed

  • 2.

    van de Logt AE, Rijpma SR, Vink CH, Prudon-Rosmulder E, Wetzels JF, van Berkel M: The bias between different albumin assays may affect clinical decision-making. Kidney Int 95: 15141517, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Meyrier A, Niaudet P: Acute kidney injury complicating nephrotic syndrome of minimal change disease. Kidney Int 94: 861869, 2018 PubMed

  • 4.

    Glassock RJ: Secondary minimal change disease. Nephrol Dial Transplant 18[Suppl 6]: vi52vi58, 2003 PubMed

  • 5.

    Shalhoub RJ: Pathogenesis of lipoid nephrosis: A disorder of T-cell function. Lancet 2: 556560, 1974 PubMed

  • 6.

    Lagrue G, Xheneumont S, Branellec A, Hirbec G, Weil B: A vascular permeability factor elaborated from lymphocytes. I. Demonstration in patients with nephrotic syndrome. Biomedicine (Paris) 23: 3740, 1975 PubMed

    • Search Google Scholar
    • Export Citation
  • 7.

    Heslan JM, Branellec AI, Pilatte Y, Lang P, Lagrue G: Differentiation between vascular permeability factor and IL-2 in lymphocyte supernatants from patients with minimal-change nephrotic syndrome. Clin Exp Immunol 86: 157162, 1991 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Cheung PK, Stulp B, Immenschuh S, Borghuis T, Baller JF, Bakker WW: Is 100KF an isoform of hemopexin? Immunochemical characterization of the vasoactive plasma factor 100KF. J Am Soc Nephrol 10: 17001708, 1999 PubMed

    • Search Google Scholar
    • Export Citation
  • 9.

    Cheung PK, Klok PA, Baller JF, Bakker WW: Induction of experimental proteinuria in vivo following infusion of human plasma hemopexin. Kidney Int 57: 15121520, 2000 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Clement LC, Avila-Casado C, Macé C, Soria E, Bakker WW, Kersten S, : Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 17: 117122, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Kondo S, Yoshizawa N, Kusumi Y, Takeuchi A, Torikata C: Studies of glomerular permeability factor (GPF) in focal segmental glomerular sclerosis and the relationship between GPF and vascular permeability factor (VPF). Clin Nephrol 52: 278284, 1999 PubMed

    • Search Google Scholar
    • Export Citation
  • 12.

    Clement LC, Macé C, Avila-Casado C, Joles JA, Kersten S, Chugh SS: Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat Med 20: 3746, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Lai KW, Wei CL, Tan LK, Tan PH, Chiang GS, Lee CG, : Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol 18: 14761485, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Chugh SS, Clement LC, Macé C: New insights into human minimal change disease: Lessons from animal models. Am J Kidney Dis 59: 284292, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Garin EH, Blanchard DK, Matsushima K, Djeu JY: IL-8 production by peripheral blood mononuclear cells in nephrotic patients. Kidney Int 45: 13111317, 1994 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Kim AH, Chung JJ, Akilesh S, Koziell A, Jain S, Hodgin JB, : B cell-derived IL-4 acts on podocytes to induce proteinuria and foot process effacement. JCI Insight 2: e81836, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Boumediene A, Vachin P, Sendeyo K, Oniszczuk J, Zhang SY, Henique C, : NEPHRUTIX: A randomized, double-blind, placebo vs rituximab-controlled trial assessing T-cell subset changes in minimal change nephrotic syndrome. J Autoimmun 88: 91102, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Yoshikawa N, Nakanishi K, Sako M, Oba MS, Mori R, Ota E, ; Japanese Study Group of Kidney Disease in Children: A multicenter randomized trial indicates initial prednisolone treatment for childhood nephrotic syndrome for two months is not inferior to six-month treatment. Kidney Int 87: 225232, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Sinha A, Saha A, Kumar M, Sharma S, Afzal K, Mehta A, : Extending initial prednisolone treatment in a randomized control trial from 3 to 6 months did not significantly influence the course of illness in children with steroid-sensitive nephrotic syndrome. Kidney Int 87: 217224, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Webb NJA, Woolley RL, Lambe T, Frew E, Brettell EA, Barsoum EN, ; PREDNOS Collaborative Group: Long term tapering versus standard prednisolone treatment for first episode of childhood nephrotic syndrome: Phase III randomised controlled trial and economic evaluation. BMJ 365: l1800, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Hahn D, Hodson EM, Willis NS, Craig JC: Corticosteroid therapy for nephrotic syndrome in children. Cochrane Database Syst Rev CD001533: CD001533, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Waldman M, Crew RJ, Valeri A, Busch J, Stokes B, Markowitz G, : Adult minimal-change disease: Clinical characteristics, treatment, and outcomes. Clin J Am Soc Nephrol 2: 445453, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Li H, Shi X, Shen H, Li X, Wang H, Li H, : Tacrolimus versus intravenous pulse cyclophosphamide therapy in Chinese adults with steroid-resistant idiopathic minimal change nephropathy: A multicenter, open-label, nonrandomized cohort trial. Clin Ther 34: 11121120, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Ponticelli C, Edefonti A, Ghio L, Rizzoni G, Rinaldi S, Gusmano R, : Cyclosporin versus cyclophosphamide for patients with steroid-dependent and frequently relapsing idiopathic nephrotic syndrome: A multicentre randomized controlled trial. Nephrol Dial Transplant 8: 13261332, 1993 PubMed

    • Search Google Scholar
    • Export Citation
  • 25.

    Li X, Li H, Chen J, He Q, Lv R, Lin W, : Tacrolimus as a steroid-sparing agent for adults with steroid-dependent minimal change nephrotic syndrome. Nephrol Dial Transplant 23: 19191925, 2008 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Meyrier A, Condamin MC, Broneer D; Collaborative Group of the French Society of Nephrology: Treatment of adult idiopathic nephrotic syndrome with cyclosporin A: Minimal-change disease and focal-segmental glomerulosclerosis. Clin Nephrol 35[Suppl 1]: S37S42, 1991 PubMed

    • Search Google Scholar
    • Export Citation
  • 27.

    Li X, Liu Z, Wang L, Wang R, Ding G, Shi W, : Tacrolimus monotherapy after intravenous methylprednisolone in adults with minimal change nephrotic syndrome. J Am Soc Nephrol 28: 12861295, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Medjeral-Thomas NR, Lawrence C, Condon M, Sood B, Warwicker P, Brown H, : Randomized, controlled trial of tacrolimus and prednisolone monotherapy for adults with de novo minimal change disease: A multicenter, randomized, controlled trial. Clin J Am Soc Nephrol 15: 209218, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Gellermann J, Weber L, Pape L, Tönshoff B, Hoyer P, Querfeld U; Gesellschaft für Pädiatrische Nephrologie (GPN): Mycophenolate mofetil versus cyclosporin A in children with frequently relapsing nephrotic syndrome. J Am Soc Nephrol 24: 16891697, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Geng HY, Ji LN, Chen CY, Tu J, Li HR, Bao R, : [Mycophenolate mofetil versus cyclosporine A in children with primary refractory nephrotic syndrome]. Zhonghua Er Ke Za Zhi 56: 651656, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Sinha A, Puraswani M, Kalaivani M, Goyal P, Hari P, Bagga A: Efficacy and safety of mycophenolate mofetil versus levamisole in frequently relapsing nephrotic syndrome: An open-label randomized controlled trial. Kidney Int 95: 210218, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Rémy P, Audard V, Natella PA, Pelle G, Dussol B, Leray-Moragues H, ; MSN Trial Investigators: An open-label randomized controlled trial of low-dose corticosteroid plus enteric-coated mycophenolate sodium versus standard corticosteroid treatment for minimal change nephrotic syndrome in adults (MSN Study). Kidney Int 94: 12171226, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Benz K, Dötsch J, Rascher W, Stachel D: Change of the course of steroid-dependent nephrotic syndrome after rituximab therapy. Pediatr Nephrol 19: 794797, 2004 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Iijima K, Sako M, Nozu K, Mori R, Tuchida N, Kamei K, ; Rituximab for Childhood-onset Refractory Nephrotic Syndrome (RCRNS) Study Group: Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet 384: 12731281, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Ravani P, Rossi R, Bonanni A, Quinn RR, Sica F, Bodria M, : Rituximab in children with steroid-dependent nephrotic syndrome: A multicenter, open-label, noninferiority, randomized controlled trial. J Am Soc Nephrol 26: 22592266, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Ruggenenti P, Ruggiero B, Cravedi P, Vivarelli M, Massella L, Marasà M, ; Rituximab in Nephrotic Syndrome of Steroid-Dependent or Frequently Relapsing Minimal Change Disease Or Focal Segmental Glomerulosclerosis (NEMO) Study Group: Rituximab in steroid-dependent or frequently relapsing idiopathic nephrotic syndrome. J Am Soc Nephrol 25: 850863, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Webb H, Jaureguiberry G, Dufek S, Tullus K, Bockenhauer D: Cyclophosphamide and rituximab in frequently relapsing/steroid-dependent nephrotic syndrome. Pediatr Nephrol 31: 589594, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Basu B, Sander A, Roy B, Preussler S, Barua S, Mahapatra TKS, : Efficacy of rituximab vs tacrolimus in pediatric corticosteroid-dependent nephrotic syndrome: A randomized clinical trial. JAMA Pediatr 172: 757764, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Hogan J, Dossier C, Kwon T, Macher MA, Maisin A, Couderc A, : Effect of different rituximab regimens on B cell depletion and time to relapse in children with steroid-dependent nephrotic syndrome. Pediatr Nephrol 34: 253259, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Chan EY, Webb H, Yu E, Ghiggeri GM, Kemper MJ, Ma AL, : Both the rituximab dose and maintenance immunosuppression in steroid-dependent/frequently-relapsing nephrotic syndrome have important effects on outcomes. Kidney Int 97: 393401, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Ravani P, Magnasco A, Edefonti A, Murer L, Rossi R, Ghio L, : Short-term effects of rituximab in children with steroid- and calcineurin-dependent nephrotic syndrome: A randomized controlled trial. Clin J Am Soc Nephrol 6: 13081315, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Ravani P, Ponticelli A, Siciliano C, Fornoni A, Magnasco A, Sica F, : Rituximab is a safe and effective long-term treatment for children with steroid and calcineurin inhibitor-dependent idiopathic nephrotic syndrome. Kidney Int 84: 10251033, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Magnasco A, Ravani P, Edefonti A, Murer L, Ghio L, Belingheri M, : Rituximab in children with resistant idiopathic nephrotic syndrome. J Am Soc Nephrol 23: 11171124, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Ravani P, Bonanni A, Ghiggeri GM: Randomised controlled trial comparing ofatumumab to rituximab in children with steroid-dependent and calcineurin inhibitor-dependent idiopathic nephrotic syndrome: Study protocol. BMJ Open 7: e013319, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Iwabuchi Y, Miyabe Y, Makabe S, Nakano M, Manabe S, Karasawa K, : Comparison of the response of frequently relapsing steroid-dependent minimal change nephrotic syndrome to rituximab therapy between childhood-onset and adult-onset disease. Medicine (Baltimore) 97: e12704, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Fenoglio R, Sciascia S, Beltrame G, Mesiano P, Ferro M, Quattrocchio G, : Rituximab as a front-line therapy for adult-onset minimal change disease with nephrotic syndrome. Oncotarget 9: 2879928804, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Kronbichler A, Kerschbaum J, Fernandez-Fresnedo G, Hoxha E, Kurschat CE, Busch M, : Rituximab treatment for relapsing minimal change disease and focal segmental glomerulosclerosis: A systematic review. Am J Nephrol 39: 322330, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Kittanamongkolchai W, Cheungpasitporn W, Zand L: Efficacy and safety of adrenocorticotropic hormone treatment in glomerular diseases: A systematic review and meta-analysis. Clin Kidney J 9: 387396, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Madan A, Mijovic-Das S, Stankovic A, Teehan G, Milward AS, Khastgir A: Acthar gel in the treatment of nephrotic syndrome: A multicenter retrospective case series. BMC Nephrol 17: 37, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Wang CS, Travers C, McCracken C, Leong T, Gbadegesin R, Quiroga A, : Adrenocorticotropic hormone for childhood nephrotic syndrome: The ATLANTIS randomized trial. Clin J Am Soc Nephrol 13: 18591865, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Szeto CC, Lai FM, Chow KM, Kwan BC, Kwong VW, Leung CB, : Long-term outcome of biopsy-proven minimal change nephropathy in Chinese adults. Am J Kidney Dis 65: 710718, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Sethi S, Glassock RJ, Fervenza FC: Focal segmental glomerulosclerosis: Towards a better understanding for the practicing nephrologist. Nephrol Dial Transplant 30: 375384, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Izzedine H, Launay-Vacher V, Bourry E, Brocheriou I, Karie S, Deray G: Drug-induced glomerulopathies. Expert Opin Drug Saf 5: 95106, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Chandra P, Kopp JB: Viruses and collapsing glomerulopathy: A brief critical review. Clin Kidney J 6: 15, 2013 PubMed

  • 55.

    Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD: Obesity-related glomerulopathy: An emerging epidemic. Kidney Int 59: 14981509, 2001 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Kriz W, Lemley KV: A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol 26: 258269, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Kriz W, Lemley KV: Potential relevance of shear stress for slit diaphragm and podocyte function. Kidney Int 91: 12831286, 2017 PubMed

  • 58.

    Campbell KN, Tumlin JA: Protecting podocytes: A key target for therapy of focal segmental glomerulosclerosis. Am J Nephrol 47[Suppl 1]: 1429, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Campbell KN, Wong JS, Gupta R, Asanuma K, Sudol M, He JC, : Yes-associated protein (YAP) promotes cell survival by inhibiting proapoptotic dendrin signaling. J Biol Chem 288: 1705717062, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Schwartzman M, Reginensi A, Wong JS, Basgen JM, Meliambro K, Nicholas SB, : Podocyte-specific deletion of yes-associated protein causes FSGS and progressive renal failure. J Am Soc Nephrol 27: 216226, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE, : Podocyte depletion causes glomerulosclerosis: Diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol 16: 29412952, 2005 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Eng DG, Sunseri MW, Kaverina NV, Roeder SS, Pippin JW, Shankland SJ: Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis. Kidney Int 88: 9991012, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Kretzler M: Role of podocytes in focal sclerosis: defining the point of no return. J Am Soc Nephrol 16: 28302832, 2005 PubMed

  • 64.

    Savin VJ, Sharma M, Zhou J, Gennochi D, Fields T, Sharma R, : Renal and hematological effects of CLCF-1, a B-cell-stimulating cytokine of the IL-6 family. J Immunol Res 2015: 714964, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Wei C, El Hindi S, Li J, Fornoni A, Goes N, Sageshima J, : Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med 17: 952960, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Delville M, Sigdel TK, Wei C, Li J, Hsieh SC, Fornoni A, : A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci Transl Med 6: 256ra136, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Wada T, Nangaku M: A circulating permeability factor in focal segmental glomerulosclerosis: The hunt continues. Clin Kidney J 8: 708715, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Lepori N, Zand L, Sethi S, Fernandez-Juarez G, Fervenza FC: Clinical and pathological phenotype of genetic causes of focal segmental glomerulosclerosis in adults. Clin Kidney J 11: 179190, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    De Vriese AS, Sethi S, Nath KA, Glassock RJ, Fervenza FC: Differentiating primary, genetic, and secondary FSGS in adults: A clinicopathologic approach. J Am Soc Nephrol 29: 759774, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Sethi S, Zand L, Nasr SH, Glassock RJ, Fervenza FC: Focal and segmental glomerulosclerosis: Clinical and kidney biopsy correlations. Clin Kidney J 7: 531537, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, ; CREDENCE Trial Investigators: Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380: 22952306, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    van den Berg JG, van den Bergh Weerman MA, Assmann KJ, Weening JJ, Florquin S: Podocyte foot process effacement is not correlated with the level of proteinuria in human glomerulopathies. Kidney Int 66: 19011906, 2004 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Deegens JK, Dijkman HB, Borm GF, Steenbergen EJ, van den Berg JG, Weening JJ, : Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. Kidney Int 74: 15681576, 2008 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Maas RJ, Deegens JK, Smeets B, Moeller MJ, Wetzels JF: Minimal change disease and idiopathic FSGS: Manifestations of the same disease. Nat Rev Nephrol 12: 768776, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Hommos MS, De Vriese AS, Alexander MP, Sethi S, Vaughan L, Zand L, : The incidence of primary vs secondary focal segmental glomerulosclerosis: A clinicopathologic study. Mayo Clin Proc 92: 17721781, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Zand L, Glassock RJ, De Vriese AS, Sethi S, Fervenza FC: What are we missing in the clinical trials of focal segmental glomerulosclerosis? Nephrol Dial Transplant 32[suppl_1]: i14i21, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Hogan J, Mohan P, Appel GB: Diagnostic tests and treatment options in glomerular disease: 2014 update. Am J Kidney Dis 63: 656666, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Cattran DC, Appel GB, Hebert LA, Hunsicker LG, Pohl MA, Hoy WE, ; North America Nephrotic Syndrome Study Group: A randomized trial of cyclosporine in patients with steroid-resistant focal segmental glomerulosclerosis. Kidney Int 56: 22202226, 1999 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Ramachandran R, Kumar V, Rathi M, Nada R, Jha V, Gupta KL, : Tacrolimus therapy in adult-onset steroid-resistant nephrotic syndrome due to a focal segmental glomerulosclerosis single-center experience. Nephrol Dial Transplant 29: 19181924, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Laurin LP, Gasim AM, Poulton CJ, Hogan SL, Jennette JC, Falk RJ, : Treatment with glucocorticoids or calcineurin inhibitors in primary FSGS. Clin J Am Soc Nephrol 11: 386394, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, : The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14: 931938, 2008 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Meyrier A, Noël LH, Auriche P, Callard P; Collaborative Group of the Société de Néphrologie: Long-term renal tolerance of cyclosporin A treatment in adult idiopathic nephrotic syndrome. Kidney Int 45: 14461456, 1994 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    DaSilva I, Huerta A, Quintana L, Redondo B, Iglesias E, Draibe J, ; Spanish Group for the Study of Glomerular Diseases (GLOSEN): Rituximab for steroid-dependent or frequently relapsing idiopathic nephrotic syndrome in adults: A retrospective, multicenter study in Spain. BioDrugs 31: 239249, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Kronbichler A, Gauckler P, Bruchfeld A: Rituximab in minimal change disease and focal segmental glomerulosclerosis. Nephrol Dial Transplant: gfz205, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Roccatello D, Sciascia S, Rossi D, Alpa M, Naretto C, Radin M, : High-dose rituximab ineffective for focal segmental glomerulosclerosis: A long-term observation study. Am J Nephrol 46: 108113, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Gipson DS, Trachtman H, Kaskel FJ, Greene TH, Radeva MK, Gassman JJ, : Clinical trial of focal segmental glomerulosclerosis in children and young adults. Kidney Int 80: 868878, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Hogan J, Bomback AS, Mehta K, Canetta PA, Rao MK, Appel GB, : Treatment of idiopathic FSGS with adrenocorticotropic hormone gel. Clin J Am Soc Nephrol 8: 20722081, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Bomback AS, Canetta PA, Beck LH Jr, Ayalon R, Radhakrishnan J, Appel GB: Treatment of resistant glomerular diseases with adrenocorticotropic hormone gel: A prospective trial. Am J Nephrol 36: 5867, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    Trachtman H, Nelson P, Adler S, Campbell KN, Chaudhuri A, Derebail VK, ; DUET Study Group: DUET: A phase 2 study evaluating the efficacy and safety of sparsentan in patients with FSGS. J Am Soc Nephrol 29: 27452754, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Rajasekeran H, Reich HN, Hladunewich MA, Cattran D, Lovshin JA, Lytvyn Y, : Dapagliflozin in focal segmental glomerulosclerosis: A combined human-rodent pilot study. Am J Physiol Renal Physiol 314: F412F422, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    Santín S, Bullich G, Tazón-Vega B, García-Maset R, Giménez I, Silva I, : Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 6: 11391148, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Gribouval O, Boyer O, Hummel A, Dantal J, Martinez F, Sberro-Soussan R, : Identification of genetic causes for sporadic steroid-resistant nephrotic syndrome in adults. Kidney Int 94: 10131022, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Landini S, Mazzinghi B, Becherucci F, Allinovi M, Provenzano A, Palazzo V, : Reverse phenotyping after whole-exome sequencing in steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 15: 89100, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    Warejko JK, Tan W, Daga A, Schapiro D, Lawson JA, Shril S, : Whole exome sequencing of patients with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 13: 5362, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95.

    Groopman EE, Marasa M, Cameron-Christie S, Petrovski S, Aggarwal VS, Milo-Rasouly H, : Diagnostic utility of exome sequencing for kidney disease. N Engl J Med 380: 142151, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    Malone AF, Phelan PJ, Hall G, Cetincelik U, Homstad A, Alonso AS, : Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int 86: 12531259, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97.

    Gast C, Pengelly RJ, Lyon M, Bunyan DJ, Seaby EG, Graham N, : Collagen (COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis. Nephrol Dial Transplant 31: 961970, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98.

    Sen ES, Dean P, Yarram-Smith L, Bierzynska A, Woodward G, Buxton C, : Clinical genetic testing using a custom-designed steroid-resistant nephrotic syndrome gene panel: Analysis and recommendations. J Med Genet 54: 795804, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Yao T, Udwan K, John R, Rana A, Haghighi A, Xu L, : Integration of genetic testing and pathology for the diagnosis of adults with FSGS. Clin J Am Soc Nephrol 14: 213223, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100.

    Büscher AK, Beck BB, Melk A, Hoefele J, Kranz B, Bamborschke D, ; German Pediatric Nephrology Association (GPN): Rapid response to cyclosporin A and favorable renal outcome in nongenetic versus genetic steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 11: 245253, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101.

    Beck LH Jr, Bonegio RG, Lambeau G, Beck DM, Powell DW, Cummins TD, : M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 361: 1121, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 102.

    Tomas NM, Beck LH Jr, Meyer-Schwesinger C, Seitz-Polski B, Ma H, Zahner G, : Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med 371: 22772287, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 103.

    Sethi S, Debiec H, Madden B, Charlesworth MC, Morelle J, Gross L, : Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney Int 97: 163174, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 104.

    Sethi S, Debiec H, Madden B, Vivarelli M, Charlesworth MC, Ravindran A, : Semaphorin 3B-associated membranous nephropathy is a distinct type of disease predominantly present in pediatric patients. Kidney Int 98: 12531264, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105.

    Sethi S, Madden BJ, Debiec H, Charlesworth MC, Gross L, Ravindran A, : Exostosin 1/Exostosin 2-associated membranous nephropathy. J Am Soc Nephrol 30: 11231136, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 106.

    Hoxha E, Kneißler U, Stege G, Zahner G, Thiele I, Panzer U, : Enhanced expression of the M-type phospholipase A2 receptor in glomeruli correlates with serum receptor antibodies in primary membranous nephropathy. Kidney Int 82: 797804, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 107.

    Bobart SA, De Vriese AS, Pawar AS, Zand L, Sethi S, Giesen C, : Noninvasive diagnosis of primary membranous nephropathy using phospholipase A2 receptor antibodies. Kidney Int 95: 429438, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 108.

    Ronco P, Debiec H: Pathophysiological advances in membranous nephropathy: Time for a shift in patient’s care. Lancet 385: 19831992, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 109.

    Qin W, Beck LH Jr, Zeng C, Chen Z, Li S, Zuo K, : Anti-phospholipase A2 receptor antibody in membranous nephropathy. J Am Soc Nephrol 22: 11371143, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 110.

    Larsen CP, Messias NC, Silva FG, Messias E, Walker PD: Determination of primary versus secondary membranous glomerulopathy utilizing phospholipase A2 receptor staining in renal biopsies. Mod Pathol 26: 709715, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 111.

    Stehlé T, Audard V, Ronco P, Debiec H: Phospholipase A2 receptor and sarcoidosis-associated membranous nephropathy. Nephrol Dial Transplant 30: 10471050, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 112.

    Xie Q, Li Y, Xue J, Xiong Z, Wang L, Sun Z, : Renal phospholipase A2 receptor in hepatitis B virus-associated membranous nephropathy. Am J Nephrol 41: 345353, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 113.

    Behnert A, Schiffer M, Müller-Deile J, Beck LH Jr, Mahler M, Fritzler MJ: Antiphospholipase A2 receptor autoantibodies: A comparison of three different immunoassays for the diagnosis of idiopathic membranous nephropathy. J Immunol Res 2014: 143274, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 114.

    Timmermans SA, Abdul Hamid MA, Cohen Tervaert JW, Damoiseaux JG, van Paassen P; Limburg Renal Registry: Anti-PLA2R antibodies as a prognostic factor in PLA2R-related membranous nephropathy. Am J Nephrol 42: 7077, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 115.

    Hoxha E, Harendza S, Pinnschmidt H, Panzer U, Stahl RA: PLA2R antibody levels and clinical outcome in patients with membranous nephropathy and non-nephrotic range proteinuria under treatment with inhibitors of the renin-angiotensin system. PLoS One 9: e110681, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 116.

    Kanigicherla D, Gummadova J, McKenzie EA, Roberts SA, Harris S, Nikam M, : Anti-PLA2R antibodies measured by ELISA predict long-term outcome in a prevalent population of patients with idiopathic membranous nephropathy. Kidney Int 83: 940948, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 117.

    Hoxha E, Harendza S, Pinnschmidt H, Panzer U, Stahl RA: M-type phospholipase A2 receptor autoantibodies and renal function in patients with primary membranous nephropathy. Clin J Am Soc Nephrol 9: 18831890, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 118.

    Burbelo PD, Joshi M, Chaturvedi A, Little DJ, Thurlow JS, Waldman M, : Detection of PLA2R autoantibodies before the diagnosis of membranous nephropathy. J Am Soc Nephrol 31: 208217, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 119.

    Hoxha E, Thiele I, Zahner G, Panzer U, Harendza S, Stahl RA: Phospholipase A2 receptor autoantibodies and clinical outcome in patients with primary membranous nephropathy. J Am Soc Nephrol 25: 13571366, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 120.

    Radice A, Trezzi B, Maggiore U, Pregnolato F, Stellato T, Napodano P, : Clinical usefulness of autoantibodies to M-type phospholipase A2 receptor (PLA2R) for monitoring disease activity in idiopathic membranous nephropathy (IMN). Autoimmun Rev 15: 146154, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 121.

    Seitz-Polski B, Dolla G, Payré C, Girard CA, Polidori J, Zorzi K, : Epitope spreading of autoantibody response to PLA2R associates with poor prognosis in membranous nephropathy. J Am Soc Nephrol 27: 15171533, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 122.

    Seitz-Polski B, Debiec H, Rousseau A, Dahan K, Zaghrini C, Payré C, : Phospholipase A2 receptor 1 epitope spreading at baseline predicts reduced likelihood of remission of membranous nephropathy. J Am Soc Nephrol 29: 401408, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 123.

    Reinhard L, Zahner G, Menzel S, Koch-Nolte F, Stahl RAK, Hoxha E: Clinical relevance of domain-specific phospholipase A2 receptor 1 antibody levels in patients with membranous nephropathy. J Am Soc Nephrol 31: 197207, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 124.

    Beck LH Jr, Fervenza FC, Beck DM, Bonegio RG, Malik FA, Erickson SB, : Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J Am Soc Nephrol 22: 15431550, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 125.

    Medrano AS, Escalante EJ, Cáceres CC, Pamplona IA, Allende MT, Terrades NR, : Prognostic value of the dynamics of M-type phospholipase A2 receptor antibody titers in patients with idiopathic membranous nephropathy treated with two different immunosuppression regimens. Biomarkers 20: 7783, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 126.

    Ruggenenti P, Debiec H, Ruggiero B, Chianca A, Pellé T, Gaspari F, : Anti-phospholipase A2 receptor antibody titer predicts post-rituximab outcome of membranous nephropathy. J Am Soc Nephrol 26: 25452558, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 127.

    De Vriese AS, Glassock RJ, Nath KA, Sethi S, Fervenza FC: A proposal for a serology-based approach to membranous nephropathy. J Am Soc Nephrol 28: 421430, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 128.

    Ren S, Wu C, Zhang Y, Wang AY, Li G, Wang L, : An update on clinical significance of use of THSD7A in diagnosing idiopathic membranous nephropathy: A systematic review and meta-analysis of THSD7A in IMN. Ren Fail 40: 306313, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 129.

    Hoxha E, Beck LH Jr, Wiech T, Tomas NM, Probst C, Mindorf S, : An indirect immunofluorescence method facilitates detection of thrombospondin type 1 domain-containing 7A-specific antibodies in membranous nephropathy. J Am Soc Nephrol 28: 520531, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 130.

    Ruggenenti P, Cravedi P, Chianca A, Perna A, Ruggiero B, Gaspari F, : Rituximab in idiopathic membranous nephropathy. J Am Soc Nephrol 23: 14161425, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 131.

    Jha V, Ganguli A, Saha TK, Kohli HS, Sud K, Gupta KL, : A randomized, controlled trial of steroids and cyclophosphamide in adults with nephrotic syndrome caused by idiopathic membranous nephropathy. J Am Soc Nephrol 18: 18991904, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 132.

    Ponticelli C, Zucchelli P, Passerini P, Cesana B, Locatelli F, Pasquali S, : A 10-year follow-up of a randomized study with methylprednisolone and chlorambucil in membranous nephropathy. Kidney Int 48: 16001604, 1995 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 133.

    Cattran DC, Greenwood C, Ritchie S, Bernstein K, Churchill DN, Clark WF, ; Canadian Glomerulonephritis Study Group: A controlled trial of cyclosporine in patients with progressive membranous nephropathy. Kidney Int 47: 11301135, 1995 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 134.

    Cattran DC, Appel GB, Hebert LA, Hunsicker LG, Pohl MA, Hoy WE, ; North America Nephrotic Syndrome Study Group: Cyclosporine in patients with steroid-resistant membranous nephropathy: A randomized trial. Kidney Int 59: 14841490, 2001 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 135.

    Alexopoulos E, Papagianni A, Tsamelashvili M, Leontsini M, Memmos D: Induction and long-term treatment with cyclosporine in membranous nephropathy with the nephrotic syndrome. Nephrol Dial Transplant 21: 31273132, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 136.

    Praga M, Barrio V, Juárez GF, Luño J; Grupo Español de Estudio de la Nefropatía Membranosa: Tacrolimus monotherapy in membranous nephropathy: A randomized controlled trial. Kidney Int 71: 924930, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 137.

    Ramachandran R, Hn HK, Kumar V, Nada R, Yadav AK, Goyal A, : Tacrolimus combined with corticosteroids versus modified Ponticelli regimen in treatment of idiopathic membranous nephropathy: Randomized control trial. Nephrology (Carlton) 21: 139146, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 138.

    Caro J, Gutiérrez-Solís E, Rojas-Rivera J, Agraz I, Ramos N, Rabasco C, ; Grupo de Estudio de las Enfermedades Glomerulares de la Sociedad Española de Nefrología (GLOSEN): Predictors of response and relapse in patients with idiopathic membranous nephropathy treated with tacrolimus. Nephrol Dial Transplant 30: 467474, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 139.

    Remuzzi G, Chiurchiu C, Abbate M, Brusegan V, Bontempelli M, Ruggenenti P: Rituximab for idiopathic membranous nephropathy. Lancet 360: 923924, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 140.

    Fervenza FC, Abraham RS, Erickson SB, Irazabal MV, Eirin A, Specks U, ; Mayo Nephrology Collaborative Group: Rituximab therapy in idiopathic membranous nephropathy: A 2-year study. Clin J Am Soc Nephrol 5: 21882198, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 141.

    Dahan K, Debiec H, Plaisier E, Cachanado M, Rousseau A, Wakselman L, ; GEMRITUX Study Group: Rituximab for severe membranous nephropathy: A 6-month trial with extended follow-up. J Am Soc Nephrol 28: 348358, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 142.

    Fervenza FC, Appel GB, Barbour SJ, Rovin BH, Lafayette RA, Aslam N, ; MENTOR Investigators: Rituximab or cyclosporine in the treatment of membranous nephropathy. N Engl J Med 381: 3646, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 143.

    Scolari F, Dallera N, Gesualdo L, Santoro D, Pani A, Santostefano M, : Rituximab versus steroids and cyclophosphamide for the treatment of primary membranous nephropathy: Protocol of a pilot randomised controlled trial. BMJ Open 9: e029232, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 144.

    Rojas-Rivera J, Fernández-Juárez G, Ortiz A, Hofstra J, Gesualdo L, Tesar V, : A European multicentre and open-label controlled randomized trial to evaluate the efficacy of Sequential treatment with tacrolimus-rituximab versus steroids plus cyclophosphamide in patients with primary membranous nephropathy: The STARMEN study. Clin Kidney J 8: 503510, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 145.

    Podestà MA, Ruggiero B, Remuzzi G, Ruggenenti P: Ofatumumab for multirelapsing membranous nephropathy complicated by rituximab-induced serum-sickness. BMJ Case Rep 13: e232896, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 146.

    Klomjit N, Fervenza FC, Zand L: Successful treatment of patients with refractory PLA2R-associated membranous nephropathy with obinutuzumab: A report of 3 cases (published online ahead of print Apr 18, 2020). Am J Kidney Dis doi:PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 358 358 268
Full Text Views 634 634 468
PDF Downloads 305 305 219