Monogenic Glomerular Diseases
View More View Less
  • 1 Nephrology Division, St. Joseph’s Healthcare Hamilton and McMaster University, Hamilton, Ontario, Canada
  • 2 Nephrology Division, Toronto General Hospital, University Health Network and University of Toronto, Toronto, Ontario, Canada
  • 3 Nephrology Division, Royal Melbourne Hospital, Melbourne Australia
  • 1.

    Armstrong ME, Thomas CP: Diagnosis of monogenic chronic kidney diseases. Curr Opin Nephrol Hypertens 28: 183194, 2019 PubMed

  • 2.

    Cosgrove D, Liu S Collagen IV diseases: A focus on the glomerular basement membrane in Alport syndrome. Matrix 57-58: 4554, 2017 PubMed

  • 3.

    Barker DF, Hostikka SL, Zhou J, Chow LT, Oliphant AR, Gerken SC, : Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 248: 12241227, 1990 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Jais JP, Knebelmann B, Giatras I, De Marchi M, Rizzoni G, Renieri A, : X-linked Alport syndrome: Natural history in 195 families and genotype-phenotype correlations in males. J Am Soc Nephrol 11: 649657, 2000 PubMed

    • Search Google Scholar
    • Export Citation
  • 5.

    Savige J, Colville D, Rheault M, Gear S, Lennon R, Lagas S, : Alport syndrome in women and girls. Clin J Am Soc Nephrol 11: 17131720, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Rheault MN, Kren SM, Hartich LA, Wall M, Thomas W, Mesa HA, : X-inactivation modifies disease severity in female carriers of murine X-linked Alport syndrome. Nephrol Dial Transplant 25: 764769, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Jais JP, Knebelmann B, Giatras I, De Marchi M, Rizzoni G, Renieri A, : X-linked Alport syndrome: Natural history and genotype-phenotype correlations in girls and women belonging to 195 families: A “European Community Alport Syndrome Concerted Action” study. J Am Soc Nephrol 14: 26032610, 2003 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Guo C, Van Damme B, Vanrenterghem Y, Devriendt K, Cassiman JJ, Marynen P. Severe Alport phenotype in a woman with two missense mutations in the same COL4A5 gene and preponderant inactivation of the X chromosome carrying the normal allele. J Clin Invest 95: 18321837, 1995 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Iijima K, Nozu K, Kamei K, Nakayama M, Ito S, Matsuoka K, : Severe Alport syndrome in a young woman caused by a t(X;1)(q22.3;p36.32) balanced translocation. Pediatr Nephrol 25: 21652170, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Rheault MN. Women and Alport syndrome. Pediatr Nephrol 27: 4146, 2012 PubMed

  • 11.

    Mohammad M, Nanra R, Colville D, Trevillian P, Wang Y, Storey H, : A female with X-linked Alport syndrome and compound heterozygous COL4A5 mutations. Pediatr Nephrol 29: 481485, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Feingold J, Bois E, Chompret A, Broyer M, Gubler MC, Grünfeld JP: Genetic heterogeneity of Alport syndrome. Kidney Int 27: 672677, 1985 PubMed

  • 13.

    Mochizuki T, Lemmink HH, Mariyama M, Antignac C, Gubler MC, Pirson Y, : Identification of mutations in the alpha 3(IV) and alpha 4(IV) collagen genes in autosomal recessive Alport syndrome. Nat Genet 8: 7781, 1994 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Oka M, Nozu K, Kaito H, Fu XJ, Nakanishi K, Hashimura Y, : Natural history of genetically proven autosomal recessive Alport syndrome. Pediatr Nephrol 29: 15351544, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Matthaiou APT, Deltas C: Prevalence of clinical, pathological and molecular features of glomerular basement membrane nephropathy caused by COL4A3 or COL4A4 mutations: a systematic review [published online ahead of print Feb 10, 2020]. Clin Kidney J https://doi.org/10.1093/ckj/sfz176

    • Search Google Scholar
    • Export Citation
  • 16.

    Kamiyoshi N, Nozu K, Fu XJ, Morisada N, Nozu Y, Ye MJ, . Genetic, clinical, and pathologic backgrounds of patients with autosomal dominant Alport syndrome. Clin J Am Soc Nephrol 11: 14411449, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Kashtan CE, Ding J, Garosi G, Heidet L, Massella L, Nakanishi K, : Alport syndrome: A unified classification of genetic disorders of collagen IV α345: A position paper of the Alport Syndrome Classification Working Group. Kidney Int 93: 10451051, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Nozu K, Nakanishi K, Abe Y, Udagawa T, Okada S, Okamoto T, : A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin Exp Nephrol 23: 158168, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Fallerini C, Baldassarri M, Trevisson E, Morbidoni V, La Manna A, Lazzarin R, : Alport syndrome: Impact of digenic inheritance in patients management. Clin Genet 92: 3444, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Kashtan CE. Renal transplantation in patients with Alport syndrome: Patient selection, outcomes, and donor evaluation. Int J Nephrol Renovasc Dis 11: 267270, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Savige J, Ariani F, Mari F, Bruttini M, Renieri A, Gross O, : Expert consensus guidelines for the genetic diagnosis of Alport syndrome. Pediatr Nephrol 34: 11751189, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Bullich G, Domingo-Gallego A, Vargas I, Ruiz P, Lorente-Grandoso L, Furlano M, : A kidney-disease gene panel allows a comprehensive genetic diagnosis of cystic and glomerular inherited kidney diseases. Kidney Int 94: 363371, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Lanktree MB, Haghighi A, Guiard E, Iliuta IA, Song X, Harris PC, : Prevalence estimates of polycystic kidney and liver disease by population sequencing. J Am Soc Nephrol 29: 25932600, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Groopman EE, Marasa M, Cameron-Christie S, Petrovski S, Aggarwal VS, Milo-Rasouly H, : Diagnostic utility of exome sequencing for kidney disease. N Engl J Med 380: 142151, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Malone AF, Phelan PJ, Hall G, Cetincelik U, Homstad A, Alonso AS, : Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int 86: 12531259, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Savige J, Storey H, Il Cheong H, Gyung Kang H, Park E, Hilbert P, : X-linked and autosomal recessive Alport syndrome: Pathogenic variant features and further genotype-phenotype correlations. PLoS One 11: e0161802, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Storey H, Savige J, Sivakumar V, Abbs S, Flinter FA. COL4A3/COL4A4 mutations and features in individuals with autosomal recessive Alport syndrome. J Am Soc Nephrol 24: 19451954, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Persikov AV, Pillitteri RJ, Amin P, Schwarze U, Byers PH, Brodsky B: Stability related bias in residues replacing glycines within the collagen triple helix (Gly-Xaa-Yaa) in inherited connective tissue disorders. Hum Mutat 24: 330337, 2004 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Wang YF, Ding J, Wang F, Bu DF: Effect of glycine substitutions on alpha5(IV) chain structure and structure-phenotype correlations in Alport syndrome. Biochem Biophys Res Commun 316: 11431149, 2004 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Kobayashi Y, Yang S, Nykamp K, Garcia J, Lincoln SE, Topper SE. Pathogenic variant burden in the ExAC database: An empirical approach to evaluating population data for clinical variant interpretation. Genome Med 9: 13, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Ghosh R, Oak N, Plon SE. Evaluation of in silico algorithms for use with ACMG/AMP clinical variant interpretation guidelines. Genome Biol 18: 225, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, : Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17: 405424, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, : Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): A policy statement of the American College of Medical Genetics and Genomics. Genet Med 19: 249255, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Beicht S, Strobl-Wildemann G, Rath S, Wachter O, Alberer M, Kaminsky E, : Next generation sequencing as a useful tool in the diagnostics of mosaicism in Alport syndrome. Gene 526: 474477, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Fu XJ, Nozu K, Kaito H, Ninchoji T, Morisada N, Nakanishi K, : Somatic mosaicism and variant frequency detected by next-generation sequencing in X-linked Alport syndrome. Eur J Hum Genet 24: 387391, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Okamoto T, Nozu K, Iijima K, Ariga T: Germline mosaicism is a pitfall in the diagnosis of “sporadic” X-linked Alport syndrome. J Nephrol 32: 155159, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Risques RA, Kennedy SR. Aging and the rise of somatic cancer-associated mutations in normal tissues. PLoS Genet 14: e1007108 2018 PubMed

  • 38.

    Salem RM, Todd JN, Sandholm N, Cole JB, Chen WM, Andrews D, : Genome-wide association study of diabetic kidney disease highlights biology involved in glomerular basement membrane collagen. J Am Soc Nephrol 30: 20002016, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Haas ME, Aragam KG, Emdin CA, Bick AG, Hemani G, Davey Smith G, : Genetic association of albuminuria with cardiometabolic disease and blood pressure. Am J Hum Genet 103: 461473, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Braunisch MC, Büttner-Herold M, Günthner R, Satanovskij R, Riedhammer KM, Herr PM, : Heterozygous COL4A3 variants in histologically diagnosed focal segmental glomerulosclerosis. Front Pediatr 6: 171, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Yao T, Udwan K, John R, Rana A, Haghighi A, Xu L, : Integration of genetic testing and pathology for the diagnosis of adults with FSGS. Clin J Am Soc Nephrol 14: 213223, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Wu Y, Hu P, Xu H, Yuan J, Yuan L, Xiong W, : A novel heterozygous COL4A missense mutation in a Chinese family with focal segmental glomerulosclerosis. J Cell Mol Med 20: 23282332, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Gast C, Pengelly RJ, Lyon M, Bunyan DJ, Seaby EG, Graham N, : Collagen (COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis. Nephrol Dial Transplant 31: 961970, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Li Y, Groopman EE, D'Agati V, Prakash S, Zhang J, Mizerska-Wasiak M, : Type IV collagen mutations in familial IgA nephropathy. Kidney Int Rep 5: 10751078, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Rheault MN, Savige J, Randles MJ, Weinstock A, Stepney M, Turner AN, : The importance of clinician, patient and researcher collaborations in Alport syndrome. Pediatr Nephrol 35: 733742, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Morinière V, Dahan K, Hilbert P, Lison M, Lebbah S, Topa A, : Improving mutation screening in familial hematuric nephropathies through next generation sequencing. J Am Soc Nephrol 25: 27402751, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Kashtan CE, Ding J, Gregory M, Gross O, Heidet L, Knebelmann B, : Clinical practice recommendations for the treatment of Alport syndrome: A statement of the Alport Syndrome Research Collaborative. Pediatr Nephrol 28: 511, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Temme J, Peters F, Lange K, Pirson Y, Heidet L, Torra R, : Incidence of renal failure and nephroprotection by RAAS inhibition in heterozygous carriers of X-chromosomal and autosomal recessive Alport mutations. Kidney Int 81: 779783, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Gross O, Licht C, Anders HJ, Hoppe B, Beck B, Tönshoff B, ; Study Group Members of the Gesellschaft für Pädiatrische Nephrologie: Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int 81: 494501, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Gomez IG, MacKenna DA, Johnson BG, Kaimal V, Roach AM, Ren S, : Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest 125: 141156, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Baigent C, Lennon R Should we increase GFR with bardoxolone in Alport syndrome? J Am Soc Nephrol 29: 357359, 2018 PubMed

  • 52.

    Dufek B, Meehan DT, Delimont D, Cheung L, Gratton MA, Phillips G, : Endothelin A receptor activation on mesangial cells initiates Alport glomerular disease. Kidney Int 90: 300310, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Neuen BL, Cherney DZ, Jardine MJ, Perkovic V. Sodium-glucose cotransporter inhibitors in type 2 diabetes: Thinking beyond glucose lowering. CMAJ 191: E1128E1135, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Göbel J, Olbricht CJ, Offner G, Helmchen U, Repp H, Koch KM, : Kidney transplantation in Alport’s syndrome: Long-term outcome and allograft anti-GBM nephritis. Clin Nephrol 38: 299304, 1992 PubMed

    • Search Google Scholar
    • Export Citation
  • 55.

    Byrne MC, Budisavljevic MN, Fan Z, Self SE, Ploth DW: Renal transplant in patients with Alport’s syndrome. Am J Kidney Dis 39: 769775, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Kalluri R, Torre A, Shield CF 3rd, Zamborsky ED, Werner MC, Suchin E, : Identification of alpha3, alpha4, and alpha5 chains of type IV collagen as alloantigens for Alport posttransplant anti-glomerular basement membrane antibodies. Transplantation 69: 679683, 2000 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Rassoul Z, al-Khader AA, al-Sulaiman M, Dhar JM, Coode P: Recurrent allograft antiglomerular basement membrane glomerulonephritis in a patient with Alport’s syndrome. Am J Nephrol 10: 7376, 1990 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Kashtan CE, Michael AF: Alport syndrome. Kidney Int 50: 14451463, 1996 PubMed

  • 59.

    Waldek S, Patel MR, Banikazemi M, Lemay R, Lee P: Life expectancy and cause of death in males and females with Fabry disease: Findings from the Fabry Registry. Genet Med 11: 790796, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Eng CM, Fletcher J, Wilcox WR, Waldek S, Scott CR, Sillence DO, : Fabry disease: Baseline medical characteristics of a cohort of 1765 males and females in the Fabry Registry. J Inherit Metab Dis 30: 184192, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Grünfeld JP, Lidove O, Joly D, Barbey F: Renal disease in Fabry patients. J Inherit Metab Dis 24[Suppl 2]: 7174, discussion 65, 2001 PubMed

  • 62.

    Laney DA, Fernhoff PM: Diagnosis of Fabry disease via analysis of family history. J Genet Couns 17: 7983, 2008 PubMed

  • 63.

    Niemann M, Rolfs A, Störk S, Bijnens B, Breunig F, Beer M, : Gene mutations versus clinically relevant phenotypes: Lyso-Gb3 defines Fabry disease. Circ Cardiovasc Genet 7: 816, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Sanchez-Niño MD, Sanz AB, Carrasco S, Saleem MA, Mathieson PW, Valdivielso JM, : Globotriaosylsphingosine actions on human glomerular podocytes: Implications for Fabry nephropathy. Nephrol Dial Transplant 26: 17971802, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Sanchez-Niño MD, Carpio D, Sanz AB, Ruiz-Ortega M, Mezzano S, Ortiz A: Lyso-Gb3 activates Notch1 in human podocytes. Hum Mol Genet 24: 57205732, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Fall B, Scott CR, Mauer M, Shankland S, Pippin J, Jefferson JA, : Urinary podocyte loss is increased in patients with Fabry disease and correlates with clinical severity of Fabry nephropathy. PLoS One 11: e0168346, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Trimarchi H, Canzonieri R, Muryan A, Schiel A, Araoz A, Forrester M, : Copious podocyturia without proteinuria and with normal renal function in a young adult with Fabry disease. Case Rep Nephrol 2015: 257628, 2015 PubMed

    • Search Google Scholar
    • Export Citation
  • 68.

    Tøndel C, Kanai T, Larsen KK, Ito S, Politei JM, Warnock DG, : Foot process effacement is an early marker of nephropathy in young classic Fabry patients without albuminuria. Nephron 129: 1621, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Wanner C, Oliveira JP, Ortiz A, Mauer M, Germain DP, Linthorst GE, : Prognostic indicators of renal disease progression in adults with Fabry disease: Natural history data from the Fabry Registry. Clin J Am Soc Nephrol 5: 22202228, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Selvarajah M, Nicholls K, Hewitson TD, Becker GJ: Targeted urine microscopy in Anderson-Fabry disease: A cheap, sensitive and specific diagnostic technique. Nephrol Dial Transplant 26: 31953202, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Siegenthaler M, Huynh-Do U, Krayenbuehl P, Pollock E, Widmer U, Debaix H, : Impact of cardio-renal syndrome on adverse outcomes in patients with Fabry disease in a long-term follow-up. Int J Cardiol 249: 261267, 2017\

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Fogo AB, Bostad L, Svarstad E, Cook WJ, Moll S, Barbey F, : Scoring system for renal pathology in Fabry disease: Report of the International Study Group of Fabry Nephropathy (ISGFN). Nephrol Dial Transplant 25: 21682177, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Bracamonte ER, Kowalewska J, Starr J, Gitomer J, Alpers CE: Iatrogenic phospholipidosis mimicking Fabry disease. Am J Kidney Dis 48: 844850, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Schiffmann R, Hughes DA, Linthorst GE, Ortiz A, Svarstad E, Warnock DG, ; Conference Participants: Screening, diagnosis, and management of patients with Fabry disease: Conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int 91: 284293, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Warnock DG, Thomas CP, Vujkovac B, Campbell RC, Charrow J, Laney DA, : Antiproteinuric therapy and Fabry neuropathy: Factors associated with preserved kidney function during agalsidase-beta therapy. J Med Genet 52: 860866, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Thurberg BL, Rennke H, Colvin RB, Dikman S, Gordon RE, Collins AB, : Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy. Kidney Int 62: 19331946, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Braun F, Blomberg L, Brodesser S, Liebau MC, Schermer B, Benzing T, : Enzyme replacement therapy clears Gb3 deposits from a podocyte cell culture model of fabry disease but fails to restore altered cellular signaling. Cell Physiol Biochem 52: 11391150, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Ortiz A, Abiose A, Bichet DG, Cabrera G, Charrow J, Germain DP, : Time to treatment benefit for adult patients with Fabry disease receiving agalsidase β: Data from the Fabry Registry. J Med Genet 53: 495502, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Ramaswami U, Beck M, Hughes D, Kampmann C, Botha J, Pintos-Morell G, : Cardio-renal outcomes with long-term agalsidase alfa enzyme replacement therapy: A 10-year Fabry outcome survey (FOS) analysis. Drug Des Devel Ther 13: 37053715, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Germain DP, Hughes DA, Nicholls K, Bichet DG, Giugliani R, Wilcox WR, : Treatment of Fabry’s disease with the pharmacologic chaperone migalastat. N Engl J Med 375: 545555, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Germain DP, Charrow J, Desnick RJ, Guffon N, Kempf J, Lachmann RH, : Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J Med Genet 52: 353358, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Feriozzi S, Torras J, Cybulla M, Nicholls K, Sunder-Plassmann G, West M. The effectiveness of long-term agalsidase alfa therapy in the treatment of Fabry nephropathy. Clin J Am Soc Nephrol 7: 6069, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Terryn W, Cochat P, Froissart R, Ortiz A, Pirson Y, Poppe B, : Fabry nephropathy: Indications for screening and guidance for diagnosis and treatment by the European Renal Best Practice. Nephrol Dial Transplant 28: 505517, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Ersözlü S, Desnick RJ, Huynh-Do U, Canaan-Kühl S, Barbey F, Genitsch V, : Long-term outcomes of kidney transplantation in Fabry disease. Transplantation 102: 19241933, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Ojo A, Meier-Kriesche HU, Friedman G, Hanson J, Cibrik D, Leichtman A, : Excellent outcome of renal transplantation in patients with Fabry’s disease. Transplantation 69: 23372339, 2000 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Inderbitzin D, Avital I, Largiadèr F, Vogt B, Candinas D: Kidney transplantation improves survival and is indicated in Fabry’s disease. Transplant Proc 37: 42114214, 2005 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Shah T, Gill J, Malhotra N, Takemoto SK, Bunnapradist S: Kidney transplant outcomes in patients with Fabry disease. Transplantation 87: 280285, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 21 21 21
Full Text Views 53 53 53
PDF Downloads 27 27 27