Drug-Induced Glomerulonephritis
View More View Less
  • 1 New York Nephrology Vasculitis and Glomerular Center, Albany, New York
  • 2 Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
  • 1.

    Wei SC, Duffy CR, Allison JP: Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8: 10691086, 2018 PubMed

  • 2.

    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, : Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 375: 2334, 20158 PubMed

    • Search Google Scholar
    • Export Citation
  • 3.

    Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, ; KEYNOTE-189 Investigators: Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 378: 20782092, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Motzer RJ, Tannir NM, McDermott DF, Aren Frontera O, Melichar B, Choueiri TK, : Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 378: 12771290, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Postow MA, Callahan MK, Wolchok JD Immune checkpoint blockade in cancer therapy. J Clin Oncol 33: 19741982, 2015 PubMed

  • 6.

    Postow MA, Sidlow R, Hellmann MD: Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 378: 158168, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Perazella MA, Shirali AC Nephrotoxicity of cancer immunotherapies: Past, present and future. J Am Soc Nephrol 29: 20392052, 2018 PubMed

  • 8.

    Cortazar FB, Kibbelaar ZA, Glezerman IG, Abudayyeh A, Mamlouk O, Motwani SS, : Clinical features and outcomes of immune checkpoint inhibitor-associated AKI: A multicenter study. J Am Soc Nephrol 31: 435446, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Cortazar FB, Marrone KA, Troxell ML, Ralto KM, Hoenig MP, Brahmer JR, : Clinicopathologic features of acute kidney injury associated with immune checkpoint inhibitors. Kidney Int 90: 638647, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Horvat TZ, Adel NG, Dang TO, Momtaz P, Postow MA, Callahan MK, : Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipulimumab at Memorial Sloan Kettering Cancer Center. J Clin Oncol 33: 31933198, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Weber JS, Hodi FS, Wolchok JD, Topalian SL, Schadendorf D, Larkin J, : Safety profile of nivolumab monotherapy: A pooled analysis of patients with advanced melanoma. J Clin Oncol 35: 785792, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Mamlouk O, Selamet U, Machado S, Abdelrahim M, Glass WF, Tchakarov A, : Nephrotoxicity of immune checkpoint inhibitors beyond tubulointerstitial nephritis: Single-center experience. J Immunother Cancer 7: 2, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Fadel F, El Karoui K, Knebelmann B: Anti-CTLA4 antibody-induced lupus nephritis. N Engl J Med 361: 211212, 2009 PubMed

  • 14.

    Kishi S, Minato M, Saijo A, Murakami N, Tamaki M, Matsuura M, : IgA nephropathy after nivolumab therapy for postoperative recurrence of lung squamous cell carcinoma. Intern Med 57 12571263, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Jung K, Zeng X, Bilusic M Nivolumab-associated acute glomerulonephritis: A case report and literature review. BMC Nephrol 17: 188, 2016 PubMed

  • 16.

    van den Brom RR, Abdulahad WH, Rutgers A, Kroesen BJ, Roozendaal C, de Groot DJ, : Rapid granulomatosis with polyangiitis induced by immune checkpoint inhibition. Rheumatology (Oxford) 55: 11431145, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Kitchlu A, Fingrut W, Avila-Casado C, Chan CT, Crump M, Hogg D, : Nephrotic syndrome with cancer immunotherapies: A report of 2 cases. Am J Kidney Dis 70: 581585, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Daanen RA, Maas RJH, Koornstra RHT, Steenbergen EJ, van Herpen CML, Willemsen AECAB: Nivolumab-associated nephrotic syndrome in a patient with renal cell carcinoma: A case report. J Immunother 40: 345348, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Estrada CC, Maldonado A, Mallipattu SK Therapeutic inhibition of VEGF signaling and associated nephrotoxicities, J Am Soc Nephrol 30: 187200, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Arnold D, Fuchs CS, Tabernero J, Ohtsu A, Zhu AX, Garon EB, : Meta-analysis of individual patient safety data from six randomized, placebo-controlled trials with the antiangiogenic VEGFR2-binding monoclonal antibody ramjcirumab.Ann Oncol 28: 29322942, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Izzedine H, Escudier B, Lhomme C, Pautier P, Rouvier P, Gueutin V, : Kidney diseases associated with anti-vascular endothelial growth factor (VEGF): An 8-year observational study at a single center. Medicine (Baltimore) 93: 333339, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Burton GJ, Redman CW, Roberts JM, Moffett A: Pre-eclampsia: pathophysiology and clinical implications. BMJ 366: l2381, 2019 PubMed

  • 23.

    Nobakht N, Nguyen HA, Kamgar MK, Abdelnour L, Rastogi A, Hanna RM Development of collapsing focal and segmental glomerulosclerosis after receiving vascular endothelial growth factor blockade. Kidney Int Rep 4: 15081512, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Nihei S, Sato J, Harada T, Kuyama S, Suzuki T, Waga N, : Antiproteinuric effects of renin-angiotensin inhibitors in lung cancer patients receiving bevacizumab. Cancer Chemother Pharmacol 81: 10511059, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Hanna RM, Barsoum M, Arman F, Selamet U, Hasnain H, Kurtz I: Nephrotoxicity induced by intravitreal vascular endothelial growth factor inhibitors: Emerging evidence.Kidney Int 96: 572580, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Avery RL, Castellarin AA, Steinle NC, Dhoot DS, Pieramici DJ, See R, : Systemic pharmacokinetics and pharmacodynamics of intravitreal aflibercept, bevacizumab, and ranibizjmab. Retina 37: 18471858 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Hanna RM, Lopez EA, Hasnain H, Selamet U, Wilson J, Youssef PN, : Three patients with injection of intravitreal vascular endothelial growth factor inhibitors and subsequent exacerbation of chronic proteinuria and hypertension. Clin Kidney J 12: 92100, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Touzani F, Geers C, Pozdzik A Intravitreal injection of anti-VEGF antibody induces glomerular endothelial cells injury. Case Rep Nephrol 2019: 2919080, 2019 PubMed

    • Search Google Scholar
    • Export Citation
  • 29.

    Glassman AR, Liu D, Jampol LM, Sun JK, Diabetic Retinopathy Clinical Research Network: Changes in blood pressure and urine albumin-creatinine ratio in a randomized clinical trial comparing aflibercept, bevacizumab, and ranibizumab for diabetic macular edema. Invest Ophthalmol Vis Sci 59: 11991205, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Qin S, Li A, Yi M, Yu S, Zhang M, Wu K Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy. J Hematol Oncol 12: 27, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Liu B, Ding F, Liu Y, Xiong G, Lin T, He D, : Incidence and risk of hypertension associated with vascular endothelial growth factor receptor tyrosine kinase inhibitors in cancer patients: A comprehensive network meta-analysis of 72 randomized controlled trials involving 30013 patients. Oncotarget 17: 6766167673, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Zhang ZF, Wang T, Liu LH, Guo HQ Risks of proteinuria associated with vascular endothelial growth factor receptor tyrosine kinase inhibitors in cancer patients: A systematic review and meta-analysis. PLoS One 9: e90135, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Izzedine H, Mangier M, Ory V, Zhang SY, Sendeyo K, Bouachi K, : Expression patterns of RelA and c-mip are associated with different glomerular diseases following anti-VEGF therapy. Kidney Int 85: 457470, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Arrestier R, Satie AP, Zhang SY, Plaisier E, Isnard-Bagnis C, Gatault P, : Minimal change nephrotic syndrome in patients infected with human immunodeficiency virus: A retrospective study of 8 cases. BMC Nephrol 19: 331, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Brodsky S, Eikelboom J, Hebert LA Anticoagulant-related nephropathy. J Am Soc Nephrol 29: 27872793 2009 PubMed

  • 36.

    Golbin L, Vigneau C, Touchard G, Thervet E, Halimi JM, Sawadogo T, : Warfarin-related nephropathy induced by three different vitamin K antagonists: Analysis of 13 biopsy-proven cases. Clin Kidney J 10: 381388, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Brodsky SV, Satoskar A, Chen J, Nadasdy G, Eagen JW, Hamirani M, : Acute kidney injury during warfarin therapy associated with obstructive tubular red blood cell casts: A report of 9 cases. Am J Kidney Dis 54: 11211126, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Awesat J, Sagy I, Haviv YS, Rabinovich A, Jotkowitz A, Shleyfer E, : Dabigatran-induced nephropathy and its successful treatment with idarucizumab: Case report and literature review. Thromb Res 169: 120122, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Brodsky SV, Mhaskar NS, Thiruveedi S, Dhingra R, Reuben SC, Calomeni E, : Acute kidney injury aggravated by treatment initiation with apixaban: Another twist of anticoagulant-related therapy. Kidney Res Clin Pract 36: 387392, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Yao X, Tangri N, Gersh BJ, Sangaralingham LR, Shah ND, Nath KA, : Renal outcomes in anticoagulated patients with atrial fibrillation. J Am Coll Cardiol 70: 26212632, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Shin JI, Luo S, Alexander GC, Inker LA, Coresh J, Chang AR, : Direct oral anticoagulants and risk of acute kidney injury in patients with atrial fibrillation. J Am Coll Cardiol 71: 251252, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Shroff GR, Stoecker R, Hart A: Non-vitamin K-dependent oral anticoagulants for nonvalvular atrial fibrillation in patients with CKD: Pragmatic considerations for the clinician. Am J Kidney Dis 72: 717727, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Pollack CV Jr, Reilly PA, van Ryn J, Eikelboom JW, Glund S, Bernstein RA, : Idarucizumab for dabigatran reversal: Full cohort analysis. N Engl J Med 377: 431441, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Connolly SJ, Crowther M, Eikelboom JW, Gibson CM, Curnutte JT, Lawrence JH, : Full study report of andexanet alfa for bleeding associated with factor Xa inhibitors. N Engl J Med 380: 13261335, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Lühe A, Künkele K-P, Haiker M, Schad K, Zihlmann C, Bauss F, : Preclinical evidence for nitrogen-containing bisphosphonate inhibition of farnesyl diphosphate (FPP) synthase in the kidney: Implications for renal safety. Toxicol In Vitro 22: 899909, 2008 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Hiroi-Furuya E, Kameda T, Hiura K, Mano H, Miyazawa K, Nakamaru Y, : Etidronate (EHDP) inhibits osteoclastic-bone resorption, promotes apoptosis and disrupts actin rings in isolate-mature osteoclasts. Calcif Tissue Int 64: 219223, 1999 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Sauter M, Jülg B, Porubsky S, Cohen C, Fischereder M, Sitter T, : Nephrotic-range proteinuria following pamidronate therapy in a patient with metastatic breast cancer: mitochondrial toxicity as a pathogenetic concept? Am J Kidney Dis 47: 10751080, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Markowitz GS, Appel GB, Fine PL, Fenves AZ, Loon NR, Jagannath S, : Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate. J Am Soc Nephrol 12: 11641172, 2001 PubMed

    • Search Google Scholar
    • Export Citation
  • 49.

    Barri YM, Munshi NC, Sukumalchantra S, Abulezz SR, Bonsib SM, Wallach J, : Podocyte injury associated glomerulopathies induced by pamidronate. Kidney Int 65: 634641, 2004 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Desikan R, Veksler Y, Raza S, Stokes B, Sabir T, Li ZJ, : Nephrotic proteinuria associated with high-dose pamidronate in multiple myeloma. Br J Haematol 119: 496499, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Shreedhara M, Fenves AZ, Benavides D, Stone MJ: Reversibility of pamidronate-associated glomerulosclerosis. Proc Bayl Univ Med Cent 20: 249253, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Banerjee D, Asif A, Striker L, Preston RA, Bourgoignie JJ, Roth D Short-term, high-dose pamidronate-induced acute tubular necrosis: The postulated mechanisms of bisphosphonate nephrotoxicity. Am J Kidney Dis 41: E18, 2006 PubMed

    • Search Google Scholar
    • Export Citation
  • 53.

    Smetana S, Michlin A, Rosenman E, Biro A, Boaz M, Katzir Z: Pamidronate-induced nephrotoxic tubular necrosis: A case report. Clin Nephrol 61: 6367, 2004 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Buysschaert M, Cosyns JP, Barreto L, Jadoul M: Pamidronate-induced tubulointerstitial nephritis with Fanconi syndrome in a patient with primary hyperparathyroidism. Nephrol Dial Transplant 18: 826829, 2003 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Markowitz GS, Fine PL, Stack JI, Kunis CL, Radhakrishnan J, Palecki W, : Toxic acute tubular necrosis following treatment with zoledronate (Zometa). Kidney Int 64: 281289, 2003 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Bodmer M, Amico P, Mihatsch MJ, Haschke M, Kummer O, Krähenbühl S, : Focal segmental glomerulosclerosis associated with long-term treatment with zoledronate in a myeloma patient. Nephrol Dial Transplant 22: 23662370, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Avguštin N, Kovač D, Kojc N, Mlinšek G, Lindič J: Acute granulomatous interstitial nephritis and acute rejection in a kidney transplant recipient after zoledronic acid therapy: A case report and review of the literature. Clin Nephrol 88: 97100, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Anderson K, Ismaila N, Flynn PJ, Halabi S, Jaganna S, Ogaily MS, : Role of bone-modifying agents in multiple myeloma: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 36: 812818, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bordoni R, George S, ; Myeloma Aredia Study Group: Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. N Engl J Med 334: 488493, 1996 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Lipton A, Theriault RL, Hortobagyi GN, Simeone J, Knight RD, Mellars K, : Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: Long term follow-up of two randomized, placebo-controlled trials. Cancer 88: 10821090, 2000 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Chang JT, Green L, Beitz J: Renal failure with the use of zoledronic acid. N Engl J Med 349: 16761679, discussion 1676–1679, 2003 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    McDermott RS, Kloth DD, Wang H, Hudes GR, Langer CJ: Impact of zoledronic acid on renal function in patients with cancer: Clinical significance and development of a predictive model. J Support Oncol 4: 524529, 2006 PubMed

    • Search Google Scholar
    • Export Citation
  • 63.

    Wilson LM, Rebholz CM, Jirru E, Liu MC, Zhang A, Gayleard J, : Benefits and harms of osteoporosis medications in patients with chronic kidney disease: A systematic review and meta-analysis. Ann Intern Med 166: 649658, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Cipriani C, Pepe J, Clementelli C, Manai R, Colangelo L, Fassino V, : Effect of a single intravenous zoledronic acid administration on biomarkers of acute kidney injury (AKI) in patients with osteoporosis: A pilot study. Br J Clin Pharmacol 83: 22662273, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Im H, Choi HM, Oh D-J, Kwon YE: Severe acute kidney injury after single-dose injection of zoledronic acid in an elderly patient. Am J Ther 25: e289e290, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Perazella MA, Markowitz GS: Bisphosphonate nephrotoxicity. Kidney Int 74: 13851393, 2008 PubMed

  • 67.

    Raje N, Terpos E, Willenbacher W, Shimizu K, García-Sanz R, Durie B, : Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: An international, double-blind, double-dummy, randomised, controlled, phase 3 study. Lancet Oncol 19: 370381, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Markowitz GS, Bomback AS, Perazella MA: Drug-induced glomerular disease: direct cellular injury. Clin J Am Soc Nephrol 10: 12911299, 2015 PubMed

  • 69.

    Mérida E, Praga M: NSAIDs and nephrotic syndrome. Clin J Am Soc Nephrol 14: 12801282, 2019 PubMed

  • 70.

    Radford MG Jr, Holley KE, Grande JP, Larson TS, Wagoner RD, Donadio JV, : Reversible membranous nephropathy associated with the use of nonsteroidal anti-inflammatory drugs. JAMA 276: 466469, 1996 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Beck LH Jr: PLA2R and THSD7A: Disparate paths to the same disease? J Am Soc Nephrol 28: 25792589, 2017 PubMed

  • 72.

    Sethi S, Debiec H, Madden B, Charlesworth MC, Morelle J, Gross L, : Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney Int 97: 163174, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Bakhriansyah M, Souverein PC, van den Hoogen MWF, de Boer A, Klungel OH: Risk of nephrotic syndrome for non-steroidal anti-inflammatory drug users. Clin J Am Soc Nephrol 14: 13551362, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Pendergraft WF 3rd, Niles JL: Trojan horses: Drug culprits associated with antineutrophil cytoplasmic autoantibody (ANCA) vasculitis. Curr Opin Rheumatol 26: 4249, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    McGrath MM, Isakova T, Rennke HG, Mottola AM, Laliberte KA, Niles JL: Contaminated cocaine and antineutrophil cytoplasmic antibody-associated disease. Clin J Am Soc Nephrol 6: 27992805, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Lood C, Hughes GC Neutrophil extracellular traps as a potential source of autoantigen in cocaine-associated autoimmunity. Rheumatology (Oxford) 56: 638643, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 77.

    Morcos MB, Lood C, Hughes GC: Demographic, clinical, and immunologic correlates among a cohort of 50 cocaine users demonstrating antineutrophil cytoplasmic antibodies. J Rheumatol 46: 11511156, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Collister D, Sathianathan C, Ryz K, Karpinski M, Bernstein K, Gibson IW: ANCA associated vasculitis secondary to levamisole-adultered cocaine with associated membranous nephropathy: A case series. Am J Nephrol 45: 209216, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Moinuddin I, Madhrira M, Bracamonte E, Thajudeen B, Sussman A: Membranous nephropathy with crescents associated with levamisole-induced MPO-ANCA vasculitis. Pathol Res Pract 212: 650653, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Carrara C, Emili S, Lin M, Alpers CE Necrotizing and crescentic glomerulonephritis with membranous nephropathy in a patient exposed to levamisole-adulterated cocaine. Clin Kidney J 9: 234238, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Roca-Argente L, Moll-Guillen JL, Espi-Reig J, Blanes-Julia M, Garcia-Martinez AM, Pujol-Marco C, : Membranous glomerulonephritis and cellular crescents induced by levamisole-adulterated cocaine abuse: A case report. Ann Transl Med 18: 271, 2015 PubMed

    • Search Google Scholar
    • Export Citation
  • 82.

    Singh V, Sharma P, Capalash N: DNA methyltransferase-1 inhibitors as epigenetic therapy for cancer. Curr Cancer Drug Targets 13: 379399, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Timlin H, Liebowitz JE, Jaggi K, Geetha D: Outcomes of hydralazine induced renal vasculitis. Eur J Rheumatol 5: 58, 2018 PubMed

  • 84.

    Yang J, Yao L-P, Dong M-J, Xu Q, Zhang J, Weng W-W, : Clinical characteristics and outcomes of propylthiouracil-induced antineutrophil cytoplasmic antibody-associated vasculitis in patients with Graves’ disease: A median 38-month retrospective cohort study from a single institution in China. Thyroid 27: 14691474, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Sanchez A, Lozier M, Adkinson BC, Ilaiwy A: c-ANCA vasculitis after initiation of denosumab. BMJ Case Rep 12: e228336, 2019 PubMed

  • 86.

    Chandra T, Tabanor-Gayle J-A, Lakshminarayanan S: Adalimumab-induced anti-neutrophilic cytoplasmic antibody vasculitis: A rare complication of an increasingly common treatment. Cureus 11: e5598, 2019 PubMed

    • Search Google Scholar
    • Export Citation
  • 87.

    Hacking S, Uppal NN, Khan N, Ionescu M, Bijol V: Systemic p-ANCA vasculitis with fatal outcome, arising in the setting of methimazole use. Clin Nephrol Case Stud 7: 2326, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Bensiradj F, Hignard M, Nakkash R, Proux A, Massy N, Kadri N, : Benzylthiouracil-induced ANCA-associated vasculitis: A case report and literature review. Eur J Case Rep Intern Med 6: 001283, 2019 PubMed

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 20 20 20
Full Text Views 55 55 55
PDF Downloads 28 28 28