Diabetic Kidney Disease
View More View Less
  • 1 Department of Medicine, Division of Nephrology, David Geffen School of Medicine at University of California, Los Angeles, California
  • 2 Department of Medicine, Division of Nephrology, Providence Health Care, University of Washington, Spokane, Washington
  • 1.

    De Boer IH, Caramori ML, Chan JCN, Heerspink HJ, Hurst C, Khunti K, ERA-EDTA Immunonephrology Working Group: Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline: Evidence-based advances in monitoring and treatment. Kidney Int 98: 839848, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Fiorentino M, Bolignano D, Tesar V, Pisano A, Biesen WV, Tripepi G, ; ERA-EDTA Immunonephrology Working Group: Renal biopsy in patients with diabetes: A pooled meta-analysis of 48 studies. Nephrol Dial Transplant 32: 97110, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 3.

    Levey AS, Eckardt KU, Dorman NM, Christiansen SL, Hoorn EJ, Ingelfinger JR, : Nomenclature for kidney function and disease: Report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int 97: 11171129, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England) 395: 709733, 2020

    • Search Google Scholar
    • Export Citation
  • 5.

    Thomas B: The global burden of diabetic kidney disease: Time trends and gender gaps. Curr Diab Rep 19: 18, 2019 PubMed

  • 6.

    Centers for Disease Control and Prevention: Chronic Kidney Disease Surveillance System—United States 2020 [cited 2020 6-23-2020]. Available from: http://www.cdc.gov/ckd.

  • 7.

    Centers for Disease Control and Prevention: Chronic Kidney Disease Surveillance System 2019 [Available from: https://nccd.cdc.gov/CKD.

    • Export Citation
  • 8.

    Saran R, Robinson B, Abbott KC, Bragg-Gresham J, Chen X, Gipson D, US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis 75: A6A7, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Bash LD, Coresh J, Köttgen A, Parekh RS, Fulop T, Wang Y, : Defining incident chronic kidney disease in the research setting: The ARIC study. Am J Epidemiol 170: 414424, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    McCullough KP, Morgenstern H, Saran R, Herman WH, Robinson BM: Projecting ESRD incidence and prevalence in the United States through 2030. J Am Soc Nephrol 30: 127135, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Narva A: Population health for CKD and diabetes: Lessons from the Indian Health Service. Am J Kidney Dis 71: 407411, 2018 PubMed

  • 12.

    Ríos Burrows N, Zhang Y, Hora I, Pavkov ME, Sheff K, Imperatore G, : Sustained lower incidence of diabetes-related end-stage kidney disease among American Indians and Alaska Natives, Blacks, and Hispanics in the U.S., 2000-2016. Diabetes Care 43: 20902097, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Lamacchia O, Viazzi F, Fioretto P, Mirijello A, Giorda C, Ceriello A, : Normoalbuminuric kidney impairment in patients with T1DM: Insights from annals initiative. Diabetol Metab Syndr 10: 60, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Doshi SM, Friedman AN: Diagnosis and management of type 2 diabetic kidney disease. Clin J Am Soc Nephrol 12: 13661373, 2017 PubMed

  • 15.

    KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease: Am J Kidney Dis 49[Suppl 2]: S12S154, 2007 PubMed

    • Search Google Scholar
    • Export Citation
  • 16.

    Koye DN, Magliano DJ, Nelson RG, Pavkov ME: The global epidemiology of diabetes and kidney disease. Adv Chronic Kidney Dis 25: 121132, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Comai G, Malvi D, Angeletti A, Vasuri F, Valente S, Ambrosi F, : Histological evidence of diabetic kidney disease precede clinical diagnosis. Am J Nephrol 50: 2936, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, ; Renal Pathology Society: Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 21: 556563, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Erdogmus S, Kiremitci S, Celebi ZK, Akturk S, Duman N, Ates K, : Non-diabetic kidney disease in type 2 diabetic patients: Prevalence, clinical predictors and outcomes. Kidney Blood Press Res 42: 886893, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Hogan JJ, Owen JG, Blady SJ, Almaani S, Avasare RS, Bansal S, ; TRIDENT Study Investigators: The feasibility and safety of obtaining research kidney biopsy cores in patients with diabetes: An interim analysis of the TRIDENT study. Clin J Am Soc Nephrol 15: 10241026, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Moledina DG, Cheung B, Kukova L, Luciano RL, Peixoto AJ, Wilson FP, : A survey of patient attitudes toward participation in biopsy-based kidney research. Kidney Int Rep 3: 412416, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Zeng C, Nan Y, Xu F, Lei Q, Li F, Chen T, : Identification of glomerular lesions and intrinsic glomerular cell types in kidney diseases via deep learning. J Pathol 252: e5491, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR; UKPDS Study Group: Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 55: 18321839, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Krolewski AS: Progressive renal decline: The new paradigm of diabetic nephropathy in type 1 diabetes. Diabetes Care 38: 954962, 2015 PubMed

  • 25.

    Colhoun HM, Marcovecchio ML: Biomarkers of diabetic kidney disease. Diabetologia 61: 9961011, 2018 PubMed

  • 26.

    Coca SG, Nadkarni GN, Huang Y, Moledina DG, Rao V, Zhang J, : Plasma biomarkers and kidney function decline in early and established diabetic kidney disease. J Am Soc Nephrol 28: 27862793, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Zhou LT, Lv LL, Liu BC: Urinary biomarkers of renal fibrosis. Adv Exp Med Biol 1165: 607623, 2019 PubMed

  • 28.

    Pontillo C, Mischak H: Urinary peptide-based classifier CKD273: Towards clinical application in chronic kidney disease. Clin Kidney J 10: 192201, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Nkuipou-Kenfack E, Zürbig P, Mischak H: The long path towards implementation of clinical proteomics: Exemplified based on CKD273. Proteomics Clin Appl 11: 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 30.

    Lindhardt M, Persson F, Zürbig P, Stalmach A, Mischak H, de Zeeuw D, : Urinary proteomics predict onset of microalbuminuria in normoalbuminuric type 2 diabetic patients, a sub-study of the DIRECT-Protect 2 study. Nephrol Dial Transplant 32: 18661873, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 31.

    Tofte N, Lindhardt M, Adamova K, Bakker SJL, Beige J, Beulens JWJ, ; PRIORITY investigators: Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): A prospective observational study and embedded randomised placebo-controlled trial. Lancet Diabetes Endocrinol 8: 301312, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Looker HC, Mauer M, Nelson RG: Role of kidney biopsies for biomarker discovery in diabetic kidney disease. Adv Chronic Kidney Dis 25: 192201, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Stevens PE, Levin A; Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members: Evaluation and management of chronic kidney disease: synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann Intern Med 158: 825830, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR; UKPDS GROUP: Development and progression of nephropathy in type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 63: 225232, 2003 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Koye DN, Shaw JE, Reid CM, Atkins RC, Reutens AT, Magliano DJ: Incidence of chronic kidney disease among people with diabetes: A systematic review of observational studies. Diabet Med 34: 887901, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Levin A, Stevens PE: Summary of KDIGO 2012 CKD Guideline: Behind the scenes, need for guidance, and a framework for moving forward. Kidney Int 85: 4961, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Nichols GA, Déruaz-Luyet A, Brodovicz KG, Kimes TM, Rosales AG, Hauske SJ: Kidney disease progression and all-cause mortality across estimated glomerular filtration rate and albuminuria categories among patients with versus without type 2 diabetes. BMC Nephrol 21: 167, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases: United States Renal Data System. 2019 USRDS annual data report: Epidemiology of kidney disease in the United States, Bethesda, MD, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2019

    • Search Google Scholar
    • Export Citation
  • 39.

    Sumida K, Nadkarni GN, Grams ME, Sang Y, Ballew SH, Coresh J, : Conversion of urine protein-creatinine ratio or urine dipstick protein to urine albumin-creatinine ratio for use in chronic kidney disease screening and prognosis: An individual participant-based meta-analysis. Ann Intern Med 173: 425435, 202014 PubMed

    • Search Google Scholar
    • Export Citation
  • 40.

    Tuttle KR, Alicic RZ, Duru OK, Jones CR, Daratha KB, Nicholas SB, : Clinical characteristics of and risk factors for chronic kidney disease among adults and children: An analysis of the CURE-CKD registry. JAMA Netw Open 2: e1918169, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Radcliffe NJ, Seah JM, Clarke M, MacIsaac RJ, Jerums G, Ekinci EI: Clinical predictive factors in diabetic kidney disease progression. J Diabetes Investig 8: 618, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Elley CR, Robinson T, Moyes SA, Kenealy T, Collins J, Robinson E, : Derivation and validation of a renal risk score for people with type 2 diabetes. Diabetes Care 36: 31133120, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Low S, Lim SC, Zhang X, Zhou S, Yeoh LY, Liu YL, : Development and validation of a predictive model for chronic kidney disease progression in type 2 diabetes mellitus based on a 13-year study in Singapore. Diabetes Res Clin Pract 123: 4954, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Tangri N, Stevens LA, Griffith J, Tighiouart H, Djurdjev O, Naimark D, : A predictive model for progression of chronic kidney disease to kidney failure. JAMA 305: 15531559, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Tangri N, Grams ME, Levey AS, Coresh J, Appel LJ, Astor BC, ; CKD Prognosis Consortium: Multinational assessment of accuracy of equations for predicting risk of kidney failure: A meta-analysis. JAMA 315: 164174, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Nelson RG, Grams ME, Ballew SH, Sang Y, Azizi F, Chadban SJ, ; CKD Prognosis Consortium: Development of risk prediction equations for incident chronic kidney disease. JAMA 322: 21042114, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Mise K, Hoshino J, Ueno T, Hazue R, Sumida K, Hiramatsu R, : Clinical and pathological predictors of estimated GFR decline in patients with type 2 diabetes and overt proteinuric diabetic nephropathy. Diabetes Metab Res Rev 31: 572581, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Fufaa GD, Weil EJ, Lemley KV, Knowler WC, Brosius FC 3rd, Yee B, : Structural predictors of loss of renal function in American Indians with type 2 diabetes. Clin J Am Soc Nephrol 11: 254261, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Nicholas SB: Structural Predictors of Renal Function Decline. Clin J Am Soc Nephrol 11: 202204, 2016 PubMed

  • 50.

    Yamanouchi M, Hoshino J, Ubara Y, Takaichi K, Kinowaki K, Fujii T, : Value of adding the renal pathological score to the kidney failure risk equation in advanced diabetic nephropathy. PLoS One 13: e0190930, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Sun L, Shang J, Xiao J, Zhao Z: Development and validation of a predictive model for end-stage renal disease risk in patients with diabetic nephropathy confirmed by renal biopsy. PeerJ 8: e8499, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW: Glomerular hyperfiltration: Definitions, mechanisms and clinical implications. Nat Rev Nephrol 8: 293300, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Trevisan R, Dodesini AR: The Hyperfiltering Kidney in Diabetes. Nephron 136: 277280, 2017 PubMed

  • 54.

    Hostetter TH, Troy JL, Brenner BM: Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int 19: 410415, 1981 PubMed

  • 55.

    Anderson S, Brenner BM. The role of intraglomerular pressure in the initiation and progression of renal disease. J Hypertens Suppl 4: S236S238, 1986 PubMed

    • Search Google Scholar
    • Export Citation
  • 56.

    Anderson S, Brenner BM: Therapeutic benefit of converting-enzyme inhibition in progressive renal disease. Am J Hypertens 1: 380S383S, 1988 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Zatz R, Dunn BR, Meyer TW, Anderson S, Rennke HG, Brenner BM: Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 77: 19251930, 1986 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM: Hyperfiltration in remnant nephrons: A potentially adverse response to renal ablation. Am J Physiol 241: F85F93, 1981 PubMed

    • Search Google Scholar
    • Export Citation
  • 59.

    Brenner BM, Meyer TW, Hostetter TH: Dietary protein intake and the progressive nature of kidney disease: The role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med 307: 652659, 1982 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Grabias BM, Konstantopoulos K: The physical basis of renal fibrosis: Effects of altered hydrodynamic forces on kidney homeostasis. Am J Physiol Renal Physiol 306: F473F485, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Hostetter TH, Rennke HG, Brenner BM: The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. Am J Med 72: 375380, 1982 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Premaratne E, Verma S, Ekinci EI, Theverkalam G, Jerums G, MacIsaac RJ: The impact of hyperfiltration on the diabetic kidney. Diabetes Metab 41: 517, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Tuttle KR, Bruton JL: Effect of insulin therapy on renal hemodynamic response to amino acids and renal hypertrophy in non-insulin-dependent diabetes. Kidney Int 42: 167173, 1992 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Tuttle KR, Bruton JL, Perusek MC, Lancaster JL, Kopp DT, DeFronzo RA: Effect of strict glycemic control on renal hemodynamic response to amino acids and renal enlargement in insulin-dependent diabetes mellitus. N Engl J Med 324: 16261632, 1991 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Tuttle KR, Puhlman ME, Cooney SK, Short RA: Effects of amino acids and glucagon on renal hemodynamics in type 1 diabetes. Am J Physiol Renal Physiol 282: F103F112, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ: Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: Cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134: 752772, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Tuttle KR: Back to the future: Glomerular hyperfiltration and the diabetic kidney. Diabetes 66: 1416, 2017 PubMed

  • 68.

    Alicic RZ, Rooney MT, Tuttle KR: Diabetic kidney disease: Challenges, progress, and possibilities. Clin J Am Soc Nephrol 12: 20322045, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Vallon V, Komers R: Pathophysiology of the diabetic kidney. Compr Physiol 1: 11751232, 2011 PubMed

  • 70.

    Brenner BM, Lawler EV, Mackenzie HS: The hyperfiltration theory: A paradigm shift in nephrology. Kidney Int 49: 17741777, 1996 PubMed

  • 71.

    Tonneijck L, Muskiet MH, Smits MM, van Bommel EJ, Heerspink HJ, van Raalte DH, : Glomerular hyperfiltration in diabetes: Mechanisms, clinical significance, and treatment. J Am Soc Nephrol 28: 10231039, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Penno G, Orsi E, Solini A, Bonora E, Fondelli C, Trevisan R, ; Renal Insufficiency And Cardiovascular Events (RIACE) Study Group: Renal hyperfiltration is independently associated with increased all-cause mortality in individuals with type 2 diabetes: A prospective cohort study. BMJ Open Diabetes Res Care 8: e001481, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Reboldi G, Verdecchia P, Fiorucci G, Beilin LJ, Eguchi K, Imai Y, : Glomerular hyperfiltration is a predictor of adverse cardiovascular outcomes. Kidney Int 93: 195203, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Zhao L, Zou Y, Liu F: Transforming growth factor-beta1 in diabetic kidney disease. Front Cell Dev Biol 8: 187, 2020 PubMed

  • 75.

    Ying Q, Wu G: Molecular mechanisms involved in podocyte EMT and concomitant diabetic kidney diseases: An update. Ren Fail 39: 474483, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Alicic RZ, Johnson EJ, Tuttle KR: Inflammatory mechanisms as new biomarkers and therapeutic targets for diabetic kidney disease. Adv Chronic Kidney Dis 25: 181191, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Pichler R, Afkarian M, Dieter BP, Tuttle KR: Immunity and inflammation in diabetic kidney disease: Translating mechanisms to biomarkers and treatment targets. Am J Physiol Renal Physiol 312: F716F731, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Pérez-Morales RE, Del Pino MD, Valdivielso JM, Ortiz A, Mora-Fernández C, Navarro-González JF: Inflammation in diabetic kidney disease. Nephron 143: 1216, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Oak JH, Cai H: Attenuation of angiotensin II signaling recouples eNOS and inhibits nonendothelial NOX activity in diabetic mice. Diabetes 56: 118126, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Turkmen K: Inflammation, oxidative stress, apoptosis, and autophagy in diabetes mellitus and diabetic kidney disease: The Four Horsemen of the Apocalypse. Int Urol Nephrol 49: 837844, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Lin TA, Wu VC, Wang CY: Autophagy in chronic kidney diseases. Cells 8: 61, 2019 PubMed

  • 82.

    Xin W, Li Z, Xu Y, Yu Y, Zhou Q, Chen L, : Autophagy protects human podocytes from high glucose-induced injury by preventing insulin resistance. Metabolism 65: 13071315, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Zeni L, Norden AGW, Cancarini G, Unwin RJ: A more tubulocentric view of diabetic kidney disease. J Nephrol 30: 701717, 2017 PubMed

  • 84.

    Wang Z, do Carmo JM, da Silva AA, Fu Y, Hall JE: Mechanisms of synergistic interactions of diabetes and hypertension in chronic kidney disease: Role of mitochondrial dysfunction and ER stress. Curr Hypertens Rep 22: 15, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Yang S, Han Y, Liu J, Song P, Xu X, Zhao L, : Mitochondria: A novel therapeutic target in diabetic nephropathy. Curr Med Chem 24: 31853202, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Kobayashi M, Yamamoto M: Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul 46: 113140, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Abdel-Salam OM, Baiuomy AR, El-Shenawy SM, Arbid MS: The anti-inflammatory effects of the phosphodiesterase inhibitor pentoxifylline in the rat. Pharmacol Res 47: 331340, 2003 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, Chahin J, Méndez ML, Gallego E, : Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: The PREDIAN trial. J Am Soc Nephrol 26: 220229, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    Scheele W, Diamond S, Gale J, Clerin V, Tamimi N, Le V, : Phosphodiesterase type 5 inhibition reduces albuminuria in subjects with overt diabetic nephropathy. J Am Soc Nephrol 27: 34593468, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Musah S, Mammoto A, Ferrante TC, Jeanty SSF, Hirano-Kobayashi M, Mammoto T, : Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng 1: 0069, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    Petrosyan A, Cravedi P, Villani V, Angeletti A, Manrique J, Renieri A, : A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat Commun 10: 3656, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Musah S, Dimitrakakis N, Camacho DM, Church GM, Ingber DE: Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a glomerulus chip. Nat Protoc 13: 16621685, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Seaquist ER, Goetz FC, Rich S, Barbosa J: Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 320: 11611165, 1989 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    Borch-Johnsen K, Nørgaard K, Hommel E, Mathiesen ER, Jensen JS, Deckert T, : Is diabetic nephropathy an inherited complication? Kidney Int 41: 719722, 1992 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95.

    Freedman BI, Tuttle AB, Spray BJ: Familial predisposition to nephropathy in African-Americans with non-insulin-dependent diabetes mellitus. Am J Kidney Dis 25: 710713, 1995 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    Pettitt DJ, Saad MF, Bennett PH, Nelson RG, Knowler WC: Familial predisposition to renal disease in two generations of Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 33: 438443, 1990 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97.

    International HapMap Consortium: A haplotype map of the human genome. Nature 437: 12991320, 2005 PubMed

  • 98.

    Schelling JR, Abboud HE, Nicholas SB, Pahl MV, Sedor JR, Adler SG, ; Family Investigation of Nephropathy and Diabetes Research Group: Genome-wide scan for estimated glomerular filtration rate in multi-ethnic diabetic populations: The Family Investigation of Nephropathy and Diabetes (FIND). Diabetes 57: 235243, 2008 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Iyengar SK, Sedor JR, Freedman BI, Kao WH, Kretzler M, Keller BJ, ; Family Investigation of Nephropathy and Diabetes (FIND): Genome-wide association and trans-ethnic meta-analysis for advanced diabetic kidney disease: Family investigation of nephropathy and diabetes (FIND). PLoS Genet 11: e1005352, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100.

    Iyengar SK, Abboud HE, Goddard KA, Saad MF, Adler SG, Arar NH, ; Family Investigation of Nephropathy and Diabetes Research Group: Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations: The family investigation of nephropathy and diabetes (FIND). Diabetes 56: 15771585, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101.

    van Zuydam NR, Ahlqvist E, Sandholm N, Deshmukh H, Rayner NW, Abdalla M, ; Finnish Diabetic Nephropathy Study (FinnDiane); Hong Kong Diabetes Registry Theme-based Research Scheme Project Group; Warren 3 and Genetics of Kidneys in Diabetes (GoKinD) Study Group; GENIE (GEnetics of Nephropathy an International Effort) Consortium; Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group; SUrrogate markers for Micro- and Macrovascular hard endpoints for Innovative diabetes Tools (SUMMIT) Consortium: A genome-wide association study of diabetic kidney disease in subjects with type 2 diabetes. Diabetes 67: 14141427, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 102.

    Gu HF: Genetic and epigenetic studies in diabetic kidney disease. Front Genet 10: 507, 2019 PubMed

  • 103.

    Li M, Pezzolesi MG: Advances in understanding the genetic basis of diabetic kidney disease. Acta Diabetol 55: 10931104, 2018 PubMed

  • 104.

    Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A: An operational definition of epigenetics. Genes Dev 23: 781783, 2009 PubMed

  • 105.

    Stumvoll M: Glucose production by the human kidney--its importance has been underestimated. Nephrol Dial Transplant 13: 29962999, 1998 PubMed

  • 106.

    Gan T, Liu X, Xu G: Glycated albumin versus HbA1c in the evaluation of glycemic control in patients with diabetes and CKD. Kidney Int Rep 3: 542554, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 107.

    Pham H, Robinson-Cohen C, Biggs ML, Ix JH, Mukamal KJ, Fried LF, : Chronic kidney disease, insulin resistance, and incident diabetes in older adults. Clin J Am Soc Nephrol 7: 588594, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 108.

    Coca SG, Ismail-Beigi F, Haq N, Krumholz HM, Parikh CR: Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: Systematic review and meta-analysis intensive glucose control in type 2 diabetes. Arch Intern Med 172: 761769, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 109.

    Kelly TN, Bazzano LA, Fonseca VA, Thethi TK, Reynolds K, He J: Systematic review: Glucose control and cardiovascular disease in type 2 diabetes. Ann Intern Med 151: 394403, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 110.

    Galindo RJ, Beck RW, Scioscia MF, Umpierrez GE, Tuttle KR: Glycemic monitoring and management in advanced chronic kidney disease. Endocr Rev 41: 756774, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 111.

    Wong MG, Perkovic V, Chalmers J, Woodward M, Li Q, Cooper ME, ; ADVANCE-ON Collaborative Group: Long-term benefits of intensive glucose control for preventing end-stage kidney disease: ADVANCE-ON. Diabetes Care 39: 694700, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 112.

    Tuttle KR, McGill JB: Evidence-based treatment of hyperglycaemia with incretin therapies in patients with type 2 diabetes and advanced chronic kidney disease. Diabetes Obes Metab 22: 10141023, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 113.

    Ruospo M, Saglimbene VM, Palmer SC, De Cosmo S, Pacilli A, Lamacchia O, : Glucose targets for preventing diabetic kidney disease and its progression. Cochrane Database Syst Rev 6: CD010137, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 114.

    Zoungas S, Arima H, Gerstein HC, Holman RR, Woodward M, Reaven P, ; Collaborators on Trials of Lowering Glucose (CONTROL) group: Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: A meta-analysis of individual participant data from randomised controlled trials. Lancet Diabetes Endocrinol 5: 431437, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 115.

    Freedman BI, Shihabi ZK, Andries L, Cardona CY, Peacock TP, Byers JR, : Relationship between assays of glycemia in diabetic subjects with advanced chronic kidney disease. Am J Nephrol 31: 375379, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 116.

    Ichikawa H, Nagake Y, Takahashi M, Nakazono H, Kawabata K, Shikata K, .: What is the best index of glycemic control in patient with diabetes mellitus on hemodialysis? Nihon Jinzo Gakkai Shi 38: 305308, 1996 PubMed

    • Search Google Scholar
    • Export Citation
  • 117.

    García-Carro C, Vergara A, Agraz I, Jacobs-Cachá C, Espinel E, Seron D, : The new era for reno-cardiovascular treatment in type 2 diabetes. J Clin Med 8: 864, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 118.

    Cornell S: Comparison of the diabetes guidelines from the ADA/EASD and the AACE/ACE. J Am Pharm Assoc (2003) 57: 261265, 2017 PubMed

  • 119.

    Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, : Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41: 26692701, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 120.

    Maruthur NM, Tseng E, Hutfless S, Wilson LM, Suarez-Cuervo C, Berger Z, : Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: A systematic review and meta-analysis. Ann Intern Med 164: 740751, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 121.

    Jasim S, Smith SA: Review: Metformin is linked to reduced mortality in type 2 diabetes with comorbid CKD and CHF. Ann Intern Med 166: JC46, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 122.

    Crowley MJ, Diamantidis CJ, McDuffie JR, Cameron CB, Stanifer JW, Mock CK, : Clinical outcomes of metformin use in populations with chronic kidney disease, congestive heart failure, or chronic liver disease: A systematic review. Ann Intern Med 166: 191200, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 123.

    Prabhu RA, Mareddy AS, Nagaraju SP, Rangaswamy D, Guddattu V: Lactic acidosis due to metformin in type 2 diabetes mellitus and chronic kidney disease stage 3-5: Is it significant? Int Urol Nephrol 51: 12291230, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 124.

    Thomson SC, Vallon V. SGLT2 Renal effects of sodium-glucose co-transporter inhibitors. Am J Cardiol 124: S28S35, 2019 PubMed

  • 125.

    Cowie MR, Fisher M: SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control [published online ahead of print Jul 14, 2020]. Nat Rev Cardiol doi: 10.1038/s41569-020-0406-8. 2020 PubMed

    • Search Google Scholar
    • Export Citation
  • 126.

    Markham A: Ertugliflozin: First Global Approval. Drugs 78: 513519, 2018 PubMed

  • 127.

    Aronson R, Frias J, Goldman A, Darekar A, Lauring B, Terra SG: Long-term efficacy and safety of ertugliflozin monotherapy in patients with inadequately controlled T2DM despite diet and exercise: VERTIS MONO extension study. Diabetes Obes Metab 20: 14531460, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 128.

    National Kidney Foundation. KDIGO clinical practice guidelines on diabetes management iin chronic kidney disease Available at: https://kdigo.org/guidelines/diabetes-ckd/. Accessed October 19, 2020

  • 129.

    Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, ; EMPA-REG OUTCOME Investigators: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373: 21172128, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 130.

    Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, ; CANVAS Program Collaborative Group: Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377: 644657, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 131.

    Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, ; DECLARE–TIMI 58 Investigators: Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380: 347357, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 132.

    Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, ; CREDENCE Trial Investigators: Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380: 22952306, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 133.

    Heerspink HJL, Stefansson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, ; Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383: 14361446, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 134.

    McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, ; DAPA-HF Trial Committees and Investigators: Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381: 19952008, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 135.

    Kosiborod M, Cavender MA, Fu AZ, Wilding JP, Khunti K, Holl RW, ; CVD-REAL Investigators and Study Group*: Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation 136: 249259, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 136.

    Patorno E, Pawar A, Franklin JM, Najafzadeh M, Déruaz-Luyet A, Brodovicz KG, : Empagliflozin and the risk of heart failure hospitalization in routine clinical care. Circulation 139: 28222830, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 137.

    McLachlan G, Keith C, Frauman A. Diabetic ketoacidosis with sodium-glucose transporter type 2 inhibitors: A case series. Med J Aust 211: 237237.e1, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 138.

    Fadini GP, Bonora BM, Avogaro A: SGLT2 inhibitors and diabetic ketoacidosis: Data from the FDA Adverse Event Reporting System. Diabetologia 60: 13851389, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 139.

    Danne T, Garg S, Peters AL, Buse JB, Mathieu C, Pettus JH, : International consensus on risk management of diabetic ketoacidosis in patients with type 1 diabetes treated with sodium-glucose cotransporter (SGLT) inhibitors. Diabetes Care 42: 11471154, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 140.

    Puckrin R, Saltiel MP, Reynier P, Azoulay L, Yu OHY, Filion KB: SGLT-2 inhibitors and the risk of infections: A systematic review and meta-analysis of randomized controlled trials. Acta Diabetol 55: 503514, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 141.

    Yabe D, Yasui A, Ji L, Lee MK, Ma RCW, Chang TJ, : Safety and tolerability of empagliflozin in East Asian patients with type 2 diabetes: Pooled analysis of phase I-III clinical trials. J Diabetes Investig 10: 418428, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 142.

    Muskiet MHA, Tonneijck L, Smits MM, van Baar MJB, Kramer MHH, Hoorn EJ, : GLP-1 and the kidney: From physiology to pharmacology and outcomes in diabetes. Nat Rev Nephrol 13: 605628, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 143.

    Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, ; REWIND Investigators: Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet 394: 121130, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 144.

    Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, ; SUSTAIN-6 Investigators: Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375: 18341844, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 145.

    Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, ; LEADER Steering Committee; LEADER Trial Investigators: Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375: 311322, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 146.

    Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, ; REWIND Investigators: Dulaglutide and renal outcomes in type 2 diabetes: An exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet 394: 131138, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 147.

    Bridoux F, Carron PL, Pegourie B, Alamartine E, Augeul-Meunier K, Karras A, ; MYRE Study Group: Effect of high-cutoff hemodialysis vs conventional hemodialysis on hemodialysis independence among patients with myeloma cast nephropathy: A randomized clinical trial. JAMA 318: 20992110, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 148.

    Husain M, Birkenfeld AL, Donsmark M, Dungan K, Eliaschewitz FG, Franco DR, ; PIONEER 6 Investigators: Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 381: 841851, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 149.

    Tuttle KR, Lakshmanan MC, Rayner B, Busch RS, Zimmermann AG, Woodward DB, : Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): A multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol 6: 605617, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 150.

    Tuttle KR, Rayner B, Lakshmanan M, Woodward B, Kwan A, Konig M, : Clinical events in type 2 diabetes and moderate-to-severe CKD by albuminuria status: Dulaglutide versus insulin glargine. J Am Soc Nephrol Abstract Supplement. 30: 102, 2019

    • Search Google Scholar
    • Export Citation
  • 151.

    Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, : 2019 update to: Management of hyperglycemia in type 2 diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 43: 487493, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 152.

    Coats AJS, Seferović PM: News from the American Heart Association: More on sodium-glucose co-transporter 2 inhibitors, diabetes and heart failure. Eur J Heart Fail 21: 261263, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 153.

    Das SR, Everett BM, Birtcher KK, Brown JM, Januzzi JL Jr, Kalyani RR, : 2020 Expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes: A report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol 76: 11171145, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 154.

    Cheng M, Gu X, Turbat-Herrera EA, Herrera GA: Tubular injury and dendritic cell activation are integral components of light chain-associated acute tubulointerstitial nephritis. Arch Pathol Lab Med 143: 12121224, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 155.

    Mosenzon O, Leibowitz G, Bhatt DL, Cahn A, Hirshberg B, Wei C, : Effect of saxagliptin on renal outcomes in the SAVOR-TIMI 53 trial. Diabetes Care 40: 6976, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 156.

    Cornel JH, Bakris GL, Stevens SR, Alvarsson M, Bax WA, Chuang LM, ; TECOS Study Group: Effect of sitagliptin on kidney function and respective cardiovascular outcomes in type 2 diabetes: Outcomes from TECOS. Diabetes Care 39: 23042310, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 157.

    Rosenstock J, Perkovic V, Johansen OE, Cooper ME, Kahn SE, Marx N, ; CARMELINA Investigators: Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: The CARMELINA randomized clinical trial. JAMA 321: 6979, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 158.

    UK Prospective Diabetes Study Group: Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 317: 703713, 1998 PubMed

    • Search Google Scholar
    • Export Citation
  • 159.

    Papademetriou V, Zaheer M, Doumas M, Lovato L, Applegate WB, Tsioufis C, ; ACCORD Study Group: Cardiovascular outcomes in action to control cardiovascular risk in diabetes: Impact of blood pressure level and presence of kidney disease. Am J Nephrol 43: 271280, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 160.

    Cushman WC, Evans GW, Byington RP, Goff DC Jr, Grimm RH Jr, Cutler JA, ; ACCORD Study Group: Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med 362: 15751585, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 161.

    Bakris GL, Weir MR, Shanifar S, Zhang Z, Douglas J, van Dijk DJ, ; RENAAL Study Group: Effects of blood pressure level on progression of diabetic nephropathy: Results from the RENAAL study. Arch Intern Med 163: 15551565, 2003 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 162.

    Berl T, Hunsicker LG, Lewis JB, Pfeffer MA, Porush JG, Rouleau JL, ; Collaborative Study Group: Impact of achieved blood pressure on cardiovascular outcomes in the irbesartan diabetic nephropathy trial. J Am Soc Nephrol 16: 21702179, 2005 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 163.

    Cooper-DeHoff RM, Gong Y, Handberg EM, Bavry AA, Denardo SJ, Bakris GL, : Tight blood pressure control and cardiovascular outcomes among hypertensive patients with diabetes and coronary artery disease. JAMA 304: 6168, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 164.

    Beddhu S, Greene T, Boucher R, Cushman WC, Wei G, Stoddard G, : Intensive systolic blood pressure control and incident chronic kidney disease in people with and without diabetes mellitus: secondary analyses of two randomised controlled trials. Lancet Diabetes Endocrinol 6: 555563, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 165.

    Breyer JA, Bain RP, Evans JK, Nahman NS Jr, Lewis EJ, Cooper M, ; The Collaborative Study Group: Predictors of the progression of renal insufficiency in patients with insulin-dependent diabetes and overt diabetic nephropathy. Kidney Int 50: 16511658, 1996 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 166.

    Pohl MA, Blumenthal S, Cordonnier DJ, De Alvaro F, Deferrari G, Eisner G, : Independent and additive impact of blood pressure control and angiotensin II receptor blockade on renal outcomes in the irbesartan diabetic nephropathy trial: Clinical implications and limitations. J Am Soc Nephrol 16: 30273037, 2005 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 167.

    Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, : KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis 63: 713735, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 168.

    Strippoli GF, Bonifati C, Craig M, Navaneethan SD, Craig JC: Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists for preventing the progression of diabetic kidney disease. Cochrane Database Syst Rev 2006: CD006257, 2006 PubMed

    • Search Google Scholar
    • Export Citation
  • 169.

    Leehey DJ, Zhang JH, Emanuele NV, Whaley-Connell A, Palevsky PM, Reilly RF, ; VA NEPHRON-D Study Group: BP and renal outcomes in diabetic kidney disease: The Veterans Affairs nephropathy in diabetes trial. Clin J Am Soc Nephrol 10: 21592169, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 170.

    Jhund PS, McMurray JJ, Chaturvedi N, Brunel P, Desai AS, Finn PV, : Mortality following a cardiovascular or renal event in patients with type 2 diabetes in the ALTITUDE trial. Eur Heart J 36: 24632469, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 171.

    Othman SS, Austin PC, Tu JV, Lee DS: Effect of prepublication results on trends in prescribing of antihypertensive medication: Impact of the ALTITUDE (aliskiren trial in type 2 diabetes using cardio-renal disease endpoints) trial on aliskiren prescribing. Circ Cardiovasc Qual Outcomes 10: e003152, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 172.

    Kalantar-Zadeh K, Joshi S, Schlueter R, Cooke J, Brown-Tortorici A, Donnelly M, : Plant-dominant low-protein diet for conservative management of chronic kidney disease [published online ahead of print Jun 29, 2020]. Nutrients doi: 10.3390/nu12071031 PubMed

    • Search Google Scholar
    • Export Citation
  • 173.

    Ko GJ, Kalantar-Zadeh K, Goldstein-Fuchs J, Rhee CM: Dietary approaches in the management of diabetic patients with kidney disease. Nutrients 9: 824, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 174.

    Kanauchi N, Ookawara S, Ito K, Mogi S, Yoshida I, Kakei M, : Factors affecting the progression of renal dysfunction and the importance of salt restriction in patients with type 2 diabetic kidney disease. Clin Exp Nephrol 19: 11201126, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 175.

    Ikizler TA, Robinson-Cohen C, Ellis C, Headley SAE, Tuttle K, Wood RJ, : Metabolic effects of diet and exercise in patients with moderate to severe CKD: A randomized clinical trial. J Am Soc Nephrol 29: 250259, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 176.

    Yaribeygi H, Atkin SL, Simental-Mendía LE, Sahebkar A: Molecular mechanisms by which aerobic exercise induces insulin sensitivity. J Cell Physiol 234: 1238512392, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 177.

    Arnett DK, Khera A, Blumenthal RS: 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: Part 1, lifestyle and behavioral factors. JAMA Cardiol 4: 10431044, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 178.

    Feodoroff M, Harjutsalo V, Forsblom C, Thorn L, Wadén J, Tolonen N, : Smoking and progression of diabetic nephropathy in patients with type 1 diabetes. Acta Diabetol 53: 525533, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 179.

    Ohkuma T, Nakamura U, Iwase M, Ide H, Fujii H, Jodai T, .: Effects of smoking and its cessation on creatinine- and cystatin C-based estimated glomerular filtration rates and albuminuria in male in patients with type 2 diabetes mellitus: The Fukuoka Diabetes Registry. Hypertens Res 39: 744751, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 180.

    Alicic RZ, Tuttle KR: Novel therapies for diabetic kidney disease. Adv Chronic Kidney Dis 21: 121133, 2014 PubMed

  • 181.

    Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Nowack C, ; on behalf of the FIDELIO-DKD study investigators; FIDELIO-DKD study investigators: Design and Baseline Characteristics of the Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease Trial. Am J Nephrol 50: 333344, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 182.

    Doria A, Galecki AT, Spino C, Pop-Busui R, Cherney DZ, Lingvay I, ; PERL Study Group: Serum Urate Lowering with Allopurinol and Kidney Function in Type 1 Diabetes. N Engl J Med 382: 24932503, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 183.

    Lytvyn Y, Godoy LC, Scholtes RA, van Raalte DH, Cherney DZ: Mineralocorticoid Antagonism and Diabetic Kidney Disease. Curr Diab Rep 19: 4, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 95 95 95
Full Text Views 135 135 135
PDF Downloads 73 73 73