Diabetic Kidney Disease
By:
Susanne B. Nicholas Department of Medicine, Division of Nephrology, David Geffen School of Medicine at University of California, Los Angeles, California

Search for other papers by Susanne B. Nicholas in
Current site
Google Scholar
PubMed
Close
and
Katherine R. Tuttle Department of Medicine, Division of Nephrology, Providence Health Care, University of Washington, Spokane, Washington

Search for other papers by Katherine R. Tuttle in
Current site
Google Scholar
PubMed
Close
  • Collapse
  • Expand
  • 1.

    De Boer IH , Caramori ML , Chan JCN , Heerspink HJ , Hurst C , Khunti K , et al. ERA-EDTA Immunonephrology Working Group: Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline: Evidence-based advances in monitoring and treatment. Kidney Int 98: 839848, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Fiorentino M , Bolignano D , Tesar V , Pisano A , Biesen WV , Tripepi G , et al.; ERA-EDTA Immunonephrology Working Group: Renal biopsy in patients with diabetes: A pooled meta-analysis of 48 studies. Nephrol Dial Transplant 32: 97110, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Levey AS , Eckardt KU , Dorman NM , Christiansen SL , Hoorn EJ , Ingelfinger JR , et al.: Nomenclature for kidney function and disease: Report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int 97: 11171129, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England) 395: 709733, 2020

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Thomas B : The global burden of diabetic kidney disease: Time trends and gender gaps. Curr Diab Rep 19: 18, 2019 PubMed

  • 6.

    Centers for Disease Control and Prevention: Chronic Kidney Disease Surveillance System—United States 2020 [cited 2020 6-23-2020]. Available from: http://www.cdc.gov/ckd.

    • PubMed
    • Export Citation
  • 7.

    Centers for Disease Control and Prevention: Chronic Kidney Disease Surveillance System 2019 [Available from: https://nccd.cdc.gov/CKD.

  • 8.

    Saran R , Robinson B , Abbott KC , Bragg-Gresham J , Chen X , Gipson D , et al. US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis 75: A6A7, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bash LD , Coresh J , Köttgen A , Parekh RS , Fulop T , Wang Y , et al.: Defining incident chronic kidney disease in the research setting: The ARIC study. Am J Epidemiol 170: 414424, 2009 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    McCullough KP , Morgenstern H , Saran R , Herman WH , Robinson BM : Projecting ESRD incidence and prevalence in the United States through 2030. J Am Soc Nephrol 30: 127135, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Narva A : Population health for CKD and diabetes: Lessons from the Indian Health Service. Am J Kidney Dis 71: 407411, 2018 PubMed

  • 12.

    Ríos Burrows N , Zhang Y , Hora I , Pavkov ME , Sheff K , Imperatore G , et al.: Sustained lower incidence of diabetes-related end-stage kidney disease among American Indians and Alaska Natives, Blacks, and Hispanics in the U.S., 2000-2016. Diabetes Care 43: 20902097, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Lamacchia O , Viazzi F , Fioretto P , Mirijello A , Giorda C , Ceriello A , et al.: Normoalbuminuric kidney impairment in patients with T1DM: Insights from annals initiative. Diabetol Metab Syndr 10: 60, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Doshi SM , Friedman AN : Diagnosis and management of type 2 diabetic kidney disease. Clin J Am Soc Nephrol 12: 13661373, 2017 PubMed

  • 15.

    KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease: Am J Kidney Dis 49[Suppl 2]: S12S154, 2007 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Koye DN , Magliano DJ , Nelson RG , Pavkov ME : The global epidemiology of diabetes and kidney disease. Adv Chronic Kidney Dis 25: 121132, 2018 PubMed

  • 17.

    Comai G , Malvi D , Angeletti A , Vasuri F , Valente S , Ambrosi F , et al.: Histological evidence of diabetic kidney disease precede clinical diagnosis. Am J Nephrol 50: 2936, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Tervaert TW , Mooyaart AL , Amann K , Cohen AH , Cook HT , Drachenberg CB , et al.; Renal Pathology Society: Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 21: 556563, 2010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Erdogmus S , Kiremitci S , Celebi ZK , Akturk S , Duman N , Ates K , et al.: Non-diabetic kidney disease in type 2 diabetic patients: Prevalence, clinical predictors and outcomes. Kidney Blood Press Res 42: 886893, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hogan JJ , Owen JG , Blady SJ , Almaani S , Avasare RS , Bansal S , et al.; TRIDENT Study Investigators: The feasibility and safety of obtaining research kidney biopsy cores in patients with diabetes: An interim analysis of the TRIDENT study. Clin J Am Soc Nephrol 15: 10241026, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Moledina DG , Cheung B , Kukova L , Luciano RL , Peixoto AJ , Wilson FP , et al.: A survey of patient attitudes toward participation in biopsy-based kidney research. Kidney Int Rep 3: 412416, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Zeng C , Nan Y , Xu F , Lei Q , Li F , Chen T , et al.: Identification of glomerular lesions and intrinsic glomerular cell types in kidney diseases via deep learning. J Pathol 252: e5491, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Retnakaran R , Cull CA , Thorne KI , Adler AI , Holman RR ; UKPDS Study Group: Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 55: 18321839, 2006 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Krolewski AS : Progressive renal decline: The new paradigm of diabetic nephropathy in type 1 diabetes. Diabetes Care 38: 954962, 2015 PubMed

  • 25.

    Colhoun HM , Marcovecchio ML : Biomarkers of diabetic kidney disease. Diabetologia 61: 9961011, 2018 PubMed

  • 26.

    Coca SG , Nadkarni GN , Huang Y , Moledina DG , Rao V , Zhang J , et al.: Plasma biomarkers and kidney function decline in early and established diabetic kidney disease. J Am Soc Nephrol 28: 27862793, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Zhou LT , Lv LL , Liu BC : Urinary biomarkers of renal fibrosis. Adv Exp Med Biol 1165: 607623, 2019 PubMed

  • 28.

    Pontillo C , Mischak H : Urinary peptide-based classifier CKD273: Towards clinical application in chronic kidney disease. Clin Kidney J 10: 192201, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Nkuipou-Kenfack E , Zürbig P , Mischak H : The long path towards implementation of clinical proteomics: Exemplified based on CKD273. Proteomics Clin Appl 11: 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Lindhardt M , Persson F , Zürbig P , Stalmach A , Mischak H , de Zeeuw D , et al.: Urinary proteomics predict onset of microalbuminuria in normoalbuminuric type 2 diabetic patients, a sub-study of the DIRECT-Protect 2 study. Nephrol Dial Transplant 32: 18661873, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Tofte N , Lindhardt M , Adamova K , Bakker SJL , Beige J , Beulens JWJ , et al.; PRIORITY investigators: Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): A prospective observational study and embedded randomised placebo-controlled trial. Lancet Diabetes Endocrinol 8: 301312, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Looker HC , Mauer M , Nelson RG : Role of kidney biopsies for biomarker discovery in diabetic kidney disease. Adv Chronic Kidney Dis 25: 192201, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Stevens PE , Levin A ; Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members: Evaluation and management of chronic kidney disease: synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann Intern Med 158: 825830, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Adler AI , Stevens RJ , Manley SE , Bilous RW , Cull CA , Holman RR ; UKPDS GROUP: Development and progression of nephropathy in type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 63: 225232, 2003 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Koye DN , Shaw JE , Reid CM , Atkins RC , Reutens AT , Magliano DJ : Incidence of chronic kidney disease among people with diabetes: A systematic review of observational studies. Diabet Med 34: 887901, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Levin A , Stevens PE : Summary of KDIGO 2012 CKD Guideline: Behind the scenes, need for guidance, and a framework for moving forward. Kidney Int 85: 4961, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Nichols GA , Déruaz-Luyet A , Brodovicz KG , Kimes TM , Rosales AG , Hauske SJ : Kidney disease progression and all-cause mortality across estimated glomerular filtration rate and albuminuria categories among patients with versus without type 2 diabetes. BMC Nephrol 21: 167, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases: United States Renal Data System. 2019 USRDS annual data report: Epidemiology of kidney disease in the United States, Bethesda, MD, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2019

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Sumida K , Nadkarni GN , Grams ME , Sang Y , Ballew SH , Coresh J , et al.: Conversion of urine protein-creatinine ratio or urine dipstick protein to urine albumin-creatinine ratio for use in chronic kidney disease screening and prognosis: An individual participant-based meta-analysis. Ann Intern Med 173: 425435, 202014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Tuttle KR , Alicic RZ , Duru OK , Jones CR , Daratha KB , Nicholas SB , et al.: Clinical characteristics of and risk factors for chronic kidney disease among adults and children: An analysis of the CURE-CKD registry. JAMA Netw Open 2: e1918169, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Radcliffe NJ , Seah JM , Clarke M , MacIsaac RJ , Jerums G , Ekinci EI : Clinical predictive factors in diabetic kidney disease progression. J Diabetes Investig 8: 618, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Elley CR , Robinson T , Moyes SA , Kenealy T , Collins J , Robinson E , et al.: Derivation and validation of a renal risk score for people with type 2 diabetes. Diabetes Care 36: 31133120, 2013 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Low S , Lim SC , Zhang X , Zhou S , Yeoh LY , Liu YL , et al.: Development and validation of a predictive model for chronic kidney disease progression in type 2 diabetes mellitus based on a 13-year study in Singapore. Diabetes Res Clin Pract 123: 4954, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Tangri N , Stevens LA , Griffith J , Tighiouart H , Djurdjev O , Naimark D , et al.: A predictive model for progression of chronic kidney disease to kidney failure. JAMA 305: 15531559, 2011 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Tangri N , Grams ME , Levey AS , Coresh J , Appel LJ , Astor BC , et al.; CKD Prognosis Consortium: Multinational assessment of accuracy of equations for predicting risk of kidney failure: A meta-analysis. JAMA 315: 164174, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Nelson RG , Grams ME , Ballew SH , Sang Y , Azizi F , Chadban SJ , et al.; CKD Prognosis Consortium: Development of risk prediction equations for incident chronic kidney disease. JAMA 322: 21042114, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Mise K , Hoshino J , Ueno T , Hazue R , Sumida K , Hiramatsu R , et al.: Clinical and pathological predictors of estimated GFR decline in patients with type 2 diabetes and overt proteinuric diabetic nephropathy. Diabetes Metab Res Rev 31: 572581, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Fufaa GD , Weil EJ , Lemley KV , Knowler WC , Brosius FC 3rd , Yee B , et al.: Structural predictors of loss of renal function in American Indians with type 2 diabetes. Clin J Am Soc Nephrol 11: 254261, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Nicholas SB : Structural Predictors of Renal Function Decline. Clin J Am Soc Nephrol 11: 202204, 2016 PubMed

  • 50.

    Yamanouchi M , Hoshino J , Ubara Y , Takaichi K , Kinowaki K , Fujii T , et al.: Value of adding the renal pathological score to the kidney failure risk equation in advanced diabetic nephropathy. PLoS One 13: e0190930, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Sun L , Shang J , Xiao J , Zhao Z : Development and validation of a predictive model for end-stage renal disease risk in patients with diabetic nephropathy confirmed by renal biopsy. PeerJ 8: e8499, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Helal I , Fick-Brosnahan GM , Reed-Gitomer B , Schrier RW : Glomerular hyperfiltration: Definitions, mechanisms and clinical implications. Nat Rev Nephrol 8: 293300, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Trevisan R , Dodesini AR : The Hyperfiltering Kidney in Diabetes. Nephron 136: 277280, 2017 PubMed

  • 54.

    Hostetter TH , Troy JL , Brenner BM : Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int 19: 410415, 1981 PubMed

  • 55.

    Anderson S , Brenner BM . The role of intraglomerular pressure in the initiation and progression of renal disease. J Hypertens Suppl 4: S236S238, 1986 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Anderson S , Brenner BM : Therapeutic benefit of converting-enzyme inhibition in progressive renal disease. Am J Hypertens 1: 380S383S, 1988 PubMed

  • 57.

    Zatz R , Dunn BR , Meyer TW , Anderson S , Rennke HG , Brenner BM : Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 77: 19251930, 1986 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Hostetter TH , Olson JL , Rennke HG , Venkatachalam MA , Brenner BM : Hyperfiltration in remnant nephrons: A potentially adverse response to renal ablation. Am J Physiol 241: F85F93, 1981 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Brenner BM , Meyer TW , Hostetter TH : Dietary protein intake and the progressive nature of kidney disease: The role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med 307: 652659, 1982 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Grabias BM , Konstantopoulos K : The physical basis of renal fibrosis: Effects of altered hydrodynamic forces on kidney homeostasis. Am J Physiol Renal Physiol 306: F473F485, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Hostetter TH , Rennke HG , Brenner BM : The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. Am J Med 72: 375380, 1982 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Premaratne E , Verma S , Ekinci EI , Theverkalam G , Jerums G , MacIsaac RJ : The impact of hyperfiltration on the diabetic kidney. Diabetes Metab 41: 517, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Tuttle KR , Bruton JL : Effect of insulin therapy on renal hemodynamic response to amino acids and renal hypertrophy in non-insulin-dependent diabetes. Kidney Int 42: 167173, 1992 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Tuttle KR , Bruton JL , Perusek MC , Lancaster JL , Kopp DT , DeFronzo RA : Effect of strict glycemic control on renal hemodynamic response to amino acids and renal enlargement in insulin-dependent diabetes mellitus. N Engl J Med 324: 16261632, 1991 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Tuttle KR , Puhlman ME , Cooney SK , Short RA : Effects of amino acids and glucagon on renal hemodynamics in type 1 diabetes. Am J Physiol Renal Physiol 282: F103F112, 2002 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Heerspink HJ , Perkins BA , Fitchett DH , Husain M , Cherney DZ : Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: Cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134: 752772, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Tuttle KR : Back to the future: Glomerular hyperfiltration and the diabetic kidney. Diabetes 66: 1416, 2017 PubMed

  • 68.

    Alicic RZ , Rooney MT , Tuttle KR : Diabetic kidney disease: Challenges, progress, and possibilities. Clin J Am Soc Nephrol 12: 20322045, 2017 PubMed

  • 69.

    Vallon V , Komers R : Pathophysiology of the diabetic kidney. Compr Physiol 1: 11751232, 2011 PubMed

  • 70.

    Brenner BM , Lawler EV , Mackenzie HS : The hyperfiltration theory: A paradigm shift in nephrology. Kidney Int 49: 17741777, 1996 PubMed

  • 71.

    Tonneijck L , Muskiet MH , Smits MM , van Bommel EJ , Heerspink HJ , van Raalte DH , et al.: Glomerular hyperfiltration in diabetes: Mechanisms, clinical significance, and treatment. J Am Soc Nephrol 28: 10231039, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Penno G , Orsi E , Solini A , Bonora E , Fondelli C , Trevisan R , et al.; Renal Insufficiency And Cardiovascular Events (RIACE) Study Group: Renal hyperfiltration is independently associated with increased all-cause mortality in individuals with type 2 diabetes: A prospective cohort study. BMJ Open Diabetes Res Care 8: e001481, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Reboldi G , Verdecchia P , Fiorucci G , Beilin LJ , Eguchi K , Imai Y , et al.: Glomerular hyperfiltration is a predictor of adverse cardiovascular outcomes. Kidney Int 93: 195203, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Zhao L , Zou Y , Liu F : Transforming growth factor-beta1 in diabetic kidney disease. Front Cell Dev Biol 8: 187, 2020 PubMed

  • 75.

    Ying Q , Wu G : Molecular mechanisms involved in podocyte EMT and concomitant diabetic kidney diseases: An update. Ren Fail 39: 474483, 2017 PubMed

  • 76.

    Alicic RZ , Johnson EJ , Tuttle KR : Inflammatory mechanisms as new biomarkers and therapeutic targets for diabetic kidney disease. Adv Chronic Kidney Dis 25: 181191, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Pichler R , Afkarian M , Dieter BP , Tuttle KR : Immunity and inflammation in diabetic kidney disease: Translating mechanisms to biomarkers and treatment targets. Am J Physiol Renal Physiol 312: F716F731, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Pérez-Morales RE , Del Pino MD , Valdivielso JM , Ortiz A , Mora-Fernández C , Navarro-González JF : Inflammation in diabetic kidney disease. Nephron 143: 1216, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Oak JH , Cai H : Attenuation of angiotensin II signaling recouples eNOS and inhibits nonendothelial NOX activity in diabetic mice. Diabetes 56: 118126, 2007 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Turkmen K : Inflammation, oxidative stress, apoptosis, and autophagy in diabetes mellitus and diabetic kidney disease: The Four Horsemen of the Apocalypse. Int Urol Nephrol 49: 837844, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Lin TA , Wu VC , Wang CY : Autophagy in chronic kidney diseases. Cells 8: 61, 2019 PubMed

  • 82.

    Xin W , Li Z , Xu Y , Yu Y , Zhou Q , Chen L , et al.: Autophagy protects human podocytes from high glucose-induced injury by preventing insulin resistance. Metabolism 65: 13071315, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Zeni L , Norden AGW , Cancarini G , Unwin RJ : A more tubulocentric view of diabetic kidney disease. J Nephrol 30: 701717, 2017 PubMed

  • 84.

    Wang Z , do Carmo JM , da Silva AA , Fu Y , Hall JE : Mechanisms of synergistic interactions of diabetes and hypertension in chronic kidney disease: Role of mitochondrial dysfunction and ER stress. Curr Hypertens Rep 22: 15, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Yang S , Han Y , Liu J , Song P , Xu X , Zhao L , et al.: Mitochondria: A novel therapeutic target in diabetic nephropathy. Curr Med Chem 24: 31853202, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Kobayashi M , Yamamoto M : Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul 46: 113140, 2006 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Abdel-Salam OM , Baiuomy AR , El-Shenawy SM , Arbid MS : The anti-inflammatory effects of the phosphodiesterase inhibitor pentoxifylline in the rat. Pharmacol Res 47: 331340, 2003 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Navarro-González JF , Mora-Fernández C , Muros de Fuentes M , Chahin J , Méndez ML , Gallego E , et al.: Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: The PREDIAN trial. J Am Soc Nephrol 26: 220229, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Scheele W , Diamond S , Gale J , Clerin V , Tamimi N , Le V , et al.: Phosphodiesterase type 5 inhibition reduces albuminuria in subjects with overt diabetic nephropathy. J Am Soc Nephrol 27: 34593468, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Musah S , Mammoto A , Ferrante TC , Jeanty SSF , Hirano-Kobayashi M , Mammoto T , et al.: Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng 1: 0069, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Petrosyan A , Cravedi P , Villani V , Angeletti A , Manrique J , Renieri A , et al.: A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat Commun 10: 3656, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Musah S , Dimitrakakis N , Camacho DM , Church GM , Ingber DE : Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a glomerulus chip. Nat Protoc 13: 16621685, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Seaquist ER , Goetz FC , Rich S , Barbosa J : Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med 320: 11611165, 1989 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Borch-Johnsen K , Nørgaard K , Hommel E , Mathiesen ER , Jensen JS , Deckert T , et al.: Is diabetic nephropathy an inherited complication? Kidney Int 41: 719722, 1992 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Freedman BI , Tuttle AB , Spray BJ : Familial predisposition to nephropathy in African-Americans with non-insulin-dependent diabetes mellitus. Am J Kidney Dis 25: 710713, 1995 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Pettitt DJ , Saad MF , Bennett PH , Nelson RG , Knowler WC : Familial predisposition to renal disease in two generations of Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 33: 438443, 1990 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    International HapMap Consortium: A haplotype map of the human genome. Nature 437: 12991320, 2005 PubMed

  • 98.

    Schelling JR , Abboud HE , Nicholas SB , Pahl MV , Sedor JR , Adler SG , et al.; Family Investigation of Nephropathy and Diabetes Research Group: Genome-wide scan for estimated glomerular filtration rate in multi-ethnic diabetic populations: The Family Investigation of Nephropathy and Diabetes (FIND). Diabetes 57: 235243, 2008 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Iyengar SK , Sedor JR , Freedman BI , Kao WH , Kretzler M , Keller BJ , et al.; Family Investigation of Nephropathy and Diabetes (FIND): Genome-wide association and trans-ethnic meta-analysis for advanced diabetic kidney disease: Family investigation of nephropathy and diabetes (FIND). PLoS Genet 11: e1005352, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Iyengar SK , Abboud HE , Goddard KA , Saad MF , Adler SG , Arar NH , et al.; Family Investigation of Nephropathy and Diabetes Research Group: Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations: The family investigation of nephropathy and diabetes (FIND). Diabetes 56: 15771585, 2007 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    van Zuydam NR , Ahlqvist E , Sandholm N , Deshmukh H , Rayner NW , Abdalla M , et al.; Finnish Diabetic Nephropathy Study (FinnDiane); Hong Kong Diabetes Registry Theme-based Research Scheme Project Group; Warren 3 and Genetics of Kidneys in Diabetes (GoKinD) Study Group; GENIE (GEnetics of Nephropathy an International Effort) Consortium; Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group; SUrrogate markers for Micro- and Macrovascular hard endpoints for Innovative diabetes Tools (SUMMIT) Consortium: A genome-wide association study of diabetic kidney disease in subjects with type 2 diabetes. Diabetes 67: 14141427, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Gu HF : Genetic and epigenetic studies in diabetic kidney disease. Front Genet 10: 507, 2019 PubMed

  • 103.

    Li M , Pezzolesi MG : Advances in understanding the genetic basis of diabetic kidney disease. Acta Diabetol 55: 10931104, 2018 PubMed

  • 104.

    Berger SL , Kouzarides T , Shiekhattar R , Shilatifard A : An operational definition of epigenetics. Genes Dev 23: 781783, 2009 PubMed

  • 105.

    Stumvoll M : Glucose production by the human kidney--its importance has been underestimated. Nephrol Dial Transplant 13: 29962999, 1998 PubMed

  • 106.

    Gan T , Liu X , Xu G : Glycated albumin versus HbA1c in the evaluation of glycemic control in patients with diabetes and CKD. Kidney Int Rep 3: 542554, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Pham H , Robinson-Cohen C , Biggs ML , Ix JH , Mukamal KJ , Fried LF , et al.: Chronic kidney disease, insulin resistance, and incident diabetes in older adults. Clin J Am Soc Nephrol 7: 588594, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Coca SG , Ismail-Beigi F , Haq N , Krumholz HM , Parikh CR : Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: Systematic review and meta-analysis intensive glucose control in type 2 diabetes. Arch Intern Med 172: 761769, 2012 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Kelly TN , Bazzano LA , Fonseca VA , Thethi TK , Reynolds K , He J : Systematic review: Glucose control and cardiovascular disease in type 2 diabetes. Ann Intern Med 151: 394403, 2009 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Galindo RJ , Beck RW , Scioscia MF , Umpierrez GE , Tuttle KR : Glycemic monitoring and management in advanced chronic kidney disease. Endocr Rev 41: 756774, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Wong MG , Perkovic V , Chalmers J , Woodward M , Li Q , Cooper ME , et al.; ADVANCE-ON Collaborative Group: Long-term benefits of intensive glucose control for preventing end-stage kidney disease: ADVANCE-ON. Diabetes Care 39: 694700, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Tuttle KR , McGill JB : Evidence-based treatment of hyperglycaemia with incretin therapies in patients with type 2 diabetes and advanced chronic kidney disease. Diabetes Obes Metab 22: 10141023, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Ruospo M , Saglimbene VM , Palmer SC , De Cosmo S , Pacilli A , Lamacchia O , et al.: Glucose targets for preventing diabetic kidney disease and its progression. Cochrane Database Syst Rev 6: CD010137, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Zoungas S , Arima H , Gerstein HC , Holman RR , Woodward M , Reaven P , et al.; Collaborators on Trials of Lowering Glucose (CONTROL) group: Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: A meta-analysis of individual participant data from randomised controlled trials. Lancet Diabetes Endocrinol 5: 431437, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Freedman BI , Shihabi ZK , Andries L , Cardona CY , Peacock TP , Byers JR , et al.: Relationship between assays of glycemia in diabetic subjects with advanced chronic kidney disease. Am J Nephrol 31: 375379, 2010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Ichikawa H , Nagake Y , Takahashi M , Nakazono H , Kawabata K , Shikata K , et al..: What is the best index of glycemic control in patient with diabetes mellitus on hemodialysis? Nihon Jinzo Gakkai Shi 38: 305308, 1996 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    García-Carro C , Vergara A , Agraz I , Jacobs-Cachá C , Espinel E , Seron D , et al.: The new era for reno-cardiovascular treatment in type 2 diabetes. J Clin Med 8: 864, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Cornell S : Comparison of the diabetes guidelines from the ADA/EASD and the AACE/ACE. J Am Pharm Assoc (2003) 57: 261265, 2017 PubMed

  • 119.

    Davies MJ , D’Alessio DA , Fradkin J , Kernan WN , Mathieu C , Mingrone G , et al.: Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41: 26692701, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Maruthur NM , Tseng E , Hutfless S , Wilson LM , Suarez-Cuervo C , Berger Z , et al.: Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: A systematic review and meta-analysis. Ann Intern Med 164: 740751, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 121.

    Jasim S , Smith SA : Review: Metformin is linked to reduced mortality in type 2 diabetes with comorbid CKD and CHF. Ann Intern Med 166: JC46, 2017 PubMed

  • 122.

    Crowley MJ , Diamantidis CJ , McDuffie JR , Cameron CB , Stanifer JW , Mock CK , et al.: Clinical outcomes of metformin use in populations with chronic kidney disease, congestive heart failure, or chronic liver disease: A systematic review. Ann Intern Med 166: 191200, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Prabhu RA , Mareddy AS , Nagaraju SP , Rangaswamy D , Guddattu V : Lactic acidosis due to metformin in type 2 diabetes mellitus and chronic kidney disease stage 3-5: Is it significant? Int Urol Nephrol 51: 12291230, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    Thomson SC , Vallon V . SGLT2 Renal effects of sodium-glucose co-transporter inhibitors. Am J Cardiol 124: S28S35, 2019 PubMed

  • 125.

    Cowie MR , Fisher M : SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control [published online ahead of print Jul 14, 2020]. Nat Rev Cardiol doi: 10.1038/s41569-020-0406-8. 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 126.

    Markham A : Ertugliflozin: First Global Approval. Drugs 78: 513519, 2018 PubMed

  • 127.

    Aronson R , Frias J , Goldman A , Darekar A , Lauring B , Terra SG : Long-term efficacy and safety of ertugliflozin monotherapy in patients with inadequately controlled T2DM despite diet and exercise: VERTIS MONO extension study. Diabetes Obes Metab 20: 14531460, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 128.

    National Kidney Foundation. KDIGO clinical practice guidelines on diabetes management iin chronic kidney disease Available at: https://kdigo.org/guidelines/diabetes-ckd/. Accessed October 19, 2020

    • PubMed
    • Export Citation
  • 129.

    Zinman B , Wanner C , Lachin JM , Fitchett D , Bluhmki E , Hantel S , et al.; EMPA-REG OUTCOME Investigators: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373: 21172128, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 130.

    Neal B , Perkovic V , Mahaffey KW , de Zeeuw D , Fulcher G , Erondu N , et al.; CANVAS Program Collaborative Group: Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377: 644657, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    Wiviott SD , Raz I , Bonaca MP , Mosenzon O , Kato ET , Cahn A , et al.; DECLARE–TIMI 58 Investigators: Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380: 347357, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 132.

    Perkovic V , Jardine MJ , Neal B , Bompoint S , Heerspink HJL , Charytan DM , et al.; CREDENCE Trial Investigators: Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 380: 22952306, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 133.

    Heerspink HJL , Stefansson BV , Correa-Rotter R , Chertow GM , Greene T , Hou FF , et al.; Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383: 14361446, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 134.

    McMurray JJV , Solomon SD , Inzucchi SE , Køber L , Kosiborod MN , Martinez FA , et al.; DAPA-HF Trial Committees and Investigators: Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381: 19952008, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 135.

    Kosiborod M , Cavender MA , Fu AZ , Wilding JP , Khunti K , Holl RW , et al.; CVD-REAL Investigators and Study Group*: Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation 136: 249259, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 136.

    Patorno E , Pawar A , Franklin JM , Najafzadeh M , Déruaz-Luyet A , Brodovicz KG , et al.: Empagliflozin and the risk of heart failure hospitalization in routine clinical care. Circulation 139: 28222830, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 137.

    McLachlan G , Keith C , Frauman A . Diabetic ketoacidosis with sodium-glucose transporter type 2 inhibitors: A case series. Med J Aust 211: 237237.e1, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 138.

    Fadini GP , Bonora BM , Avogaro A : SGLT2 inhibitors and diabetic ketoacidosis: Data from the FDA Adverse Event Reporting System. Diabetologia 60: 13851389, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 139.

    Danne T , Garg S , Peters AL , Buse JB , Mathieu C , Pettus JH , et al.: International consensus on risk management of diabetic ketoacidosis in patients with type 1 diabetes treated with sodium-glucose cotransporter (SGLT) inhibitors. Diabetes Care 42: 11471154, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 140.

    Puckrin R , Saltiel MP , Reynier P , Azoulay L , Yu OHY , Filion KB : SGLT-2 inhibitors and the risk of infections: A systematic review and meta-analysis of randomized controlled trials. Acta Diabetol 55: 503514, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Yabe D , Yasui A , Ji L , Lee MK , Ma RCW , Chang TJ , et al.: Safety and tolerability of empagliflozin in East Asian patients with type 2 diabetes: Pooled analysis of phase I-III clinical trials. J Diabetes Investig 10: 418428, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    Muskiet MHA , Tonneijck L , Smits MM , van Baar MJB , Kramer MHH , Hoorn EJ , et al.: GLP-1 and the kidney: From physiology to pharmacology and outcomes in diabetes. Nat Rev Nephrol 13: 605628, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Gerstein HC , Colhoun HM , Dagenais GR , Diaz R , Lakshmanan M , Pais P , et al.; REWIND Investigators: Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet 394: 121130, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    Marso SP , Bain SC , Consoli A , Eliaschewitz FG , Jódar E , Leiter LA , et al.; SUSTAIN-6 Investigators: Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375: 18341844, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Marso SP , Daniels GH , Brown-Frandsen K , Kristensen P , Mann JF , Nauck MA , et al.; LEADER Steering Committee; LEADER Trial Investigators: Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375: 311322, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 146.

    Gerstein HC , Colhoun HM , Dagenais GR , Diaz R , Lakshmanan M , Pais P , et al.; REWIND Investigators: Dulaglutide and renal outcomes in type 2 diabetes: An exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet 394: 131138, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 147.

    Bridoux F , Carron PL , Pegourie B , Alamartine E , Augeul-Meunier K , Karras A , et al.; MYRE Study Group: Effect of high-cutoff hemodialysis vs conventional hemodialysis on hemodialysis independence among patients with myeloma cast nephropathy: A randomized clinical trial. JAMA 318: 20992110, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 148.

    Husain M , Birkenfeld AL , Donsmark M , Dungan K , Eliaschewitz FG , Franco DR , et al.; PIONEER 6 Investigators: Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 381: 841851, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 149.

    Tuttle KR , Lakshmanan MC , Rayner B , Busch RS , Zimmermann AG , Woodward DB , et al.: Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): A multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol 6: 605617, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    Tuttle KR , Rayner B , Lakshmanan M , Woodward B , Kwan A , Konig M , et al.: Clinical events in type 2 diabetes and moderate-to-severe CKD by albuminuria status: Dulaglutide versus insulin glargine. J Am Soc Nephrol Abstract Supplement. 30: 102, 2019

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 151.

    Buse JB , Wexler DJ , Tsapas A , Rossing P , Mingrone G , Mathieu C , et al.: 2019 update to: Management of hyperglycemia in type 2 diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 43: 487493, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 152.

    Coats AJS , Seferović PM : News from the American Heart Association: More on sodium-glucose co-transporter 2 inhibitors, diabetes and heart failure. Eur J Heart Fail 21: 261263, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 153.

    Das SR , Everett BM , Birtcher KK , Brown JM , Januzzi JL Jr , Kalyani RR , et al.: 2020 Expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes: A report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol 76: 11171145, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 154.

    Cheng M , Gu X , Turbat-Herrera EA , Herrera GA : Tubular injury and dendritic cell activation are integral components of light chain-associated acute tubulointerstitial nephritis. Arch Pathol Lab Med 143: 12121224, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 155.

    Mosenzon O , Leibowitz G , Bhatt DL , Cahn A , Hirshberg B , Wei C , et al.: Effect of saxagliptin on renal outcomes in the SAVOR-TIMI 53 trial. Diabetes Care 40: 6976, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 156.

    Cornel JH , Bakris GL , Stevens SR , Alvarsson M , Bax WA , Chuang LM , et al.; TECOS Study Group: Effect of sitagliptin on kidney function and respective cardiovascular outcomes in type 2 diabetes: Outcomes from TECOS. Diabetes Care 39: 23042310, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 157.

    Rosenstock J , Perkovic V , Johansen OE , Cooper ME , Kahn SE , Marx N , et al.; CARMELINA Investigators: Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: The CARMELINA randomized clinical trial. JAMA 321: 6979, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 158.

    UK Prospective Diabetes Study Group: Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 317: 703713, 1998 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 159.

    Papademetriou V , Zaheer M , Doumas M , Lovato L , Applegate WB , Tsioufis C , et al.; ACCORD Study Group: Cardiovascular outcomes in action to control cardiovascular risk in diabetes: Impact of blood pressure level and presence of kidney disease. Am J Nephrol 43: 271280, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 160.

    Cushman WC , Evans GW , Byington RP , Goff DC Jr , Grimm RH Jr , Cutler JA , et al.; ACCORD Study Group: Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med 362: 15751585, 2010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 161.

    Bakris GL , Weir MR , Shanifar S , Zhang Z , Douglas J , van Dijk DJ , et al.; RENAAL Study Group: Effects of blood pressure level on progression of diabetic nephropathy: Results from the RENAAL study. Arch Intern Med 163: 15551565, 2003 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 162.

    Berl T , Hunsicker LG , Lewis JB , Pfeffer MA , Porush JG , Rouleau JL , et al.; Collaborative Study Group: Impact of achieved blood pressure on cardiovascular outcomes in the irbesartan diabetic nephropathy trial. J Am Soc Nephrol 16: 21702179, 2005 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 163.

    Cooper-DeHoff RM , Gong Y , Handberg EM , Bavry AA , Denardo SJ , Bakris GL , et al.: Tight blood pressure control and cardiovascular outcomes among hypertensive patients with diabetes and coronary artery disease. JAMA 304: 6168, 2010 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 164.

    Beddhu S , Greene T , Boucher R , Cushman WC , Wei G , Stoddard G , et al.: Intensive systolic blood pressure control and incident chronic kidney disease in people with and without diabetes mellitus: secondary analyses of two randomised controlled trials. Lancet Diabetes Endocrinol 6: 555563, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 165.

    Breyer JA , Bain RP , Evans JK , Nahman NS Jr , Lewis EJ , Cooper M , et al.; The Collaborative Study Group: Predictors of the progression of renal insufficiency in patients with insulin-dependent diabetes and overt diabetic nephropathy. Kidney Int 50: 16511658, 1996 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 166.

    Pohl MA , Blumenthal S , Cordonnier DJ , De Alvaro F , Deferrari G , Eisner G , et al.: Independent and additive impact of blood pressure control and angiotensin II receptor blockade on renal outcomes in the irbesartan diabetic nephropathy trial: Clinical implications and limitations. J Am Soc Nephrol 16: 30273037, 2005 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 167.

    Inker LA , Astor BC , Fox CH , Isakova T , Lash JP , Peralta CA , et al.: KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis 63: 713735, 2014 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 168.

    Strippoli GF , Bonifati C , Craig M , Navaneethan SD , Craig JC : Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists for preventing the progression of diabetic kidney disease. Cochrane Database Syst Rev 2006: CD006257, 2006 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 169.

    Leehey DJ , Zhang JH , Emanuele NV , Whaley-Connell A , Palevsky PM , Reilly RF , et al.; VA NEPHRON-D Study Group: BP and renal outcomes in diabetic kidney disease: The Veterans Affairs nephropathy in diabetes trial. Clin J Am Soc Nephrol 10: 21592169, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 170.

    Jhund PS , McMurray JJ , Chaturvedi N , Brunel P , Desai AS , Finn PV , et al.: Mortality following a cardiovascular or renal event in patients with type 2 diabetes in the ALTITUDE trial. Eur Heart J 36: 24632469, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 171.

    Othman SS , Austin PC , Tu JV , Lee DS : Effect of prepublication results on trends in prescribing of antihypertensive medication: Impact of the ALTITUDE (aliskiren trial in type 2 diabetes using cardio-renal disease endpoints) trial on aliskiren prescribing. Circ Cardiovasc Qual Outcomes 10: e003152, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 172.

    Kalantar-Zadeh K , Joshi S , Schlueter R , Cooke J , Brown-Tortorici A , Donnelly M , et al.: Plant-dominant low-protein diet for conservative management of chronic kidney disease [published online ahead of print Jun 29, 2020]. Nutrients doi: 10.3390/nu12071031 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 173.

    Ko GJ , Kalantar-Zadeh K , Goldstein-Fuchs J , Rhee CM : Dietary approaches in the management of diabetic patients with kidney disease. Nutrients 9: 824, 2017 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 174.

    Kanauchi N , Ookawara S , Ito K , Mogi S , Yoshida I , Kakei M , et al.: Factors affecting the progression of renal dysfunction and the importance of salt restriction in patients with type 2 diabetic kidney disease. Clin Exp Nephrol 19: 11201126, 2015 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 175.

    Ikizler TA , Robinson-Cohen C , Ellis C , Headley SAE , Tuttle K , Wood RJ , et al.: Metabolic effects of diet and exercise in patients with moderate to severe CKD: A randomized clinical trial. J Am Soc Nephrol 29: 250259, 2018 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 176.

    Yaribeygi H , Atkin SL , Simental-Mendía LE , Sahebkar A : Molecular mechanisms by which aerobic exercise induces insulin sensitivity. J Cell Physiol 234: 1238512392, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 177.

    Arnett DK , Khera A , Blumenthal RS : 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: Part 1, lifestyle and behavioral factors. JAMA Cardiol 4: 10431044, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 178.

    Feodoroff M , Harjutsalo V , Forsblom C , Thorn L , Wadén J , Tolonen N , et al.: Smoking and progression of diabetic nephropathy in patients with type 1 diabetes. Acta Diabetol 53: 525533, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 179.

    Ohkuma T , Nakamura U , Iwase M , Ide H , Fujii H , Jodai T , et al..: Effects of smoking and its cessation on creatinine- and cystatin C-based estimated glomerular filtration rates and albuminuria in male in patients with type 2 diabetes mellitus: The Fukuoka Diabetes Registry. Hypertens Res 39: 744751, 2016 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 180.

    Alicic RZ , Tuttle KR : Novel therapies for diabetic kidney disease. Adv Chronic Kidney Dis 21: 121133, 2014 PubMed

  • 181.

    Bakris GL , Agarwal R , Anker SD , Pitt B , Ruilope LM , Nowack C , et al.; on behalf of the FIDELIO-DKD study investigators; FIDELIO-DKD study investigators: Design and Baseline Characteristics of the Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease Trial. Am J Nephrol 50: 333344, 2019 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 182.

    Doria A , Galecki AT , Spino C , Pop-Busui R , Cherney DZ , Lingvay I , et al.; PERL Study Group: Serum Urate Lowering with Allopurinol and Kidney Function in Type 1 Diabetes. N Engl J Med 382: 24932503, 2020 PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 183.

    Lytvyn Y , Godoy LC , Scholtes