Mechanism and Pathophysiology
View More View Less
  • 1 Department of Physiology and Pharmacology, Liberty University College of Osteopathic Medicine, Lynchburg, Virginia
  • 2 Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York
  • 3 Department of Physiology and Neuroscience, Keck School of Medicine of USC, Los Angeles, California
  • 1.

    Pazoki R, Dehghan A, Evangelou E, Warren H, Gao H, Caulfield M, .: Genetic predisposition to high blood pressure and lifestyle factors: associations with midlife blood pressure levels and cardiovascular events. Circulation 137: 653661, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Artamonov MV, Sonkusare SK, Good ME, Momotani K, Eto M, Isakson BE, . RSK2 contributes to myogenic vasoconstriction of resistance arteries by activating smooth muscle myosin and the Na(+)/H(+) exchanger [published online ahead of print Oct 30, 2018]. Sci Signal $ $ doi:10.1126/scisignal.aar3924.PubMed

    • Search Google Scholar
    • Export Citation
  • 3.

    Straub AC, Zeigler AC, Isakson BE: The myoendothelial junction: connections that deliver the message. Physiology (Bethesda) 29: 242249, 2014 PubMed

    • Search Google Scholar
    • Export Citation
  • 4.

    Good ME, Musante L, La Salvia S, Howell NL, Carey RM, Le TH, .: Circulating extracellular vesicles in normotension restrain vasodilation in resistance arteries. Hypertension 75: 218228, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Sandow SL, Senadheera S, Bertrand PP, Murphy TV, Tare M: Myoendothelial contacts, gap junctions, and microdomains: anatomical links to function? Microcirculation 19: 403415, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Maarouf N, Sancho M, Fürstenhaupt T, Tran CH, Welsh DG: Structural analysis of endothelial projections from mesenteric arteries. Microcirculation 24: 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Lechauve C, Butcher JT, Freiwan A, Biwer LA, Keith JM, Good ME, .: Endothelial cell α-globin and its molecular chaperone α-hemoglobin-stabilizing protein regulate arteriolar contractility. J Clin Invest 128: 50735082, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Johnson AK, Xue B: Central nervous system neuroplasticity and the sensitization of hypertension. Nat Rev Nephrol 14: 750766, 2018 PubMed

  • 9.

    Guyenet PG, Stornetta RL, Holloway BB, Souza GMPR, Abbott SBG: Rostral ventrolateral medulla and hypertension. Hypertension 72: 559566, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Guyenet PG: The sympathetic control of blood pressure. Nat Rev Neurosci 7: 335346, 2006 PubMed

  • 11.

    Grassi G, Mark A, Esler M: The sympathetic nervous system alterations in human hypertension. Circ Res 116: 976990, 2015 PubMed

  • 12.

    Dampney RAL: Resetting of the baroreflex control of sympathetic vasomotor activity during natural behaviors: description and conceptual model of central mechanisms. Front Neurosci 11: 461, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Xue B, Zhang Z, Johnson RF, Johnson AK: Sensitization of slow pressor angiotensin II (Ang II)-initiated hypertension: induction of sensitization by prior Ang II treatment. Hypertension 59: 459466, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Edmondson D, von Känel R: Post-traumatic stress disorder and cardiovascular disease. Lancet Psychiatry 4: 320329, 2017 PubMed

  • 15.

    Mansukhani MP, Covassin N, Somers VK: Apneic sleep, insufficient sleep, and hypertension. Hypertension 73: 744756, 2019 PubMed

  • 16.

    Somers VK, Dyken ME, Clary MP, Abboud FM: Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 96: 18971904, 1995 PubMed

  • 17.

    Fava C, Dorigoni S, Dalle Vedove F, Danese E, Montagnana M, Guidi GC, .: Effect of CPAP on blood pressure in patients with OSA/hypopnea a systematic review and meta-analysis. Chest 145: 762771, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Prabhakar NR: Carotid body chemoreflex: a driver of autonomic abnormalities in sleep apnoea. Exp Physiol 101: 975985, 2016 PubMed

  • 19.

    Takahashi K, Ueda S, Kobayashi T, Nishiyama A, Fujisawa Y, Sugaya T, .: Chronic intermittent hypoxia-mediated renal sympathetic nerve activation in hypertension and cardiovascular disease. Sci Rep 8: 17926, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Warchol-Celinska E, Prejbisz A, Kadziela J, Florczak E, Januszewicz M, Michalowska I, .: Renal denervation in resistant hypertension and obstructive sleep apnea: randomized proof-of-concept phase ii trial. Hypertension 72: 381390, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Aziz M, Amar L, Lorthioir A: Resistant hypertension and obstructive sleep apnea: is there a specific indication for endovascular renal denervation? Hypertension 72: 281282, 2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Calvillo L, Gironacci MM, Crotti L, Meroni PL, Parati G: Neuroimmune crosstalk in the pathophysiology of hypertension. Nat Rev Cardiol 16: 476490, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Norlander AE, Madhur MS, Harrison DG: The immunology of hypertension. J Exp Med 215: 2133, 2018 PubMed

  • 24.

    Wilck N, Balogh A, Markó L, Bartolomaeus H, Müller DN: The role of sodium in modulating immune cell function. Nat Rev Nephrol 15: 546558, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Mattson DL: Immune mechanisms of salt-sensitive hypertension and renal end-organ damage. Nat Rev Nephrol 15: 290300, 2019 PubMed

  • 26.

    Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, .: Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204: 24492460, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Trott DW, Thabet SR, Kirabo A, Saleh MA, Itani H, Norlander AE, .: Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension 64: 11081115, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Kirabo A, Fontana V, de Faria AP, Loperena R, Galindo CL, Wu J, .: DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest 124: 46424656, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Van Beusecum JP, Barbaro NR, McDowell Z, Aden LA, Xiao L, Pandey AK, .: High salt activates CD11c+ antigen-presenting cells via SGK (serum glucocorticoid kinase) 1 to promote renal inflammation and salt-sensitive hypertension. Hypertension 74: 555563, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Ferguson JF, Aden LA, Barbaro NR, Van Beusecum JP, Xiao L, Simmons AJ, .: High dietary salt-induced dendritic cell activation underlies microbial dysbiosis-associated hypertension. JCI Insight 5: e126241, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Touyz RM: The neuroimmune axis in the kidney: role in hypertension. Circ Res 117: 487489, 2015 PubMed

  • 32.

    Xiao L, Kirabo A, Wu J, Saleh MA, Zhu L, Wang F, .: Renal denervation prevents immune cell activation and renal inflammation in angiotensin II-induced hypertension. Circ Res 117: 547557, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Krum H, Schlaich MP, Sobotka PA, Böhm M, Mahfoud F, Rocha-Singh K, .: Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet 383: 622629, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Esler MD, Böhm M, Sievert H, Rump CL, Schmieder RE, Krum H, .: Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur Heart J 35: 17521759, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, .; SYMPLICITY HTN-3 Investigators: A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370: 13931401, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA, .; SPYRAL HTN-OFF MED trial investigators*: Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 390: 21602170, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Kandzari DE, Böhm M, Mahfoud F, Townsend RR, Weber MA, Pocock S, .; SPYRAL HTN-ON MED Trial Investigators: Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 391: 23462355, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Davies J, .; RADIANCE-HTN Investigators: Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 391: 23352345, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Fengler K, Rommel KP, Blazek S, Besler C, Hartung P, von Roeder M, .: A three-arm randomized trial of different renal denervation devices and techniques in patients with resistant hypertension (RADIOSOUND-HTN). Circulation 139: 590600, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Böhm M, Kario K, Kandzari DE, Mahfoud F, Weber MA, Schmieder RE, .; SPYRAL HTN-OFF MED Pivotal Investigators: Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED pivotal): a multicentre, randomised, sham-controlled trial [published online ahead of print Mar 27 2020]. Lancet doi: 10.1016/S0140-6736(20)30554-7, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Carnevale D, Perrotta M, Pallante F, Fardella V, Iacobucci R, Fardella S, .: A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nat Commun 7: 13035, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Lu H, Cassis LA, Kooi CWV, Daugherty A. Structure and functions of angiotensin. Hypertens Res 39: 492500, 2016 PubMed

  • 43.

    Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, .: International Union of Basic and Clinical Pharmacology. XCIX. angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli [corrected]. Pharmacol Rev 67: 754819, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Schütten MT, Houben AJ, de Leeuw PW, Stehouwer CD: The link between adipose tissue renin-angiotensin-aldosterone system signaling and obesity-associated hypertension. Physiology (Bethesda) 32: 197209, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 45.

    Kobori H, Nangaku M, Navar LG, Nishiyama A: The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59: 251287, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Ferrario CM, Ahmad S, Varagic J, Cheng CP, Groban L, Wang H, .: Intracrine angiotensin II functions originate from noncanonical pathways in the human heart. Am J Physiol Heart Circ Physiol 311: H404H414, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Ramkumar N, Kohan DE: The (pro)renin receptor: an emerging player in hypertension and metabolic syndrome. Kidney Int 95: 10411052, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Nguyen G, Muller DN: The biology of the (pro)renin receptor. J Am Soc Nephrol 21: 1823, 2010 PubMed

  • 49.

    Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C: Physiology of kidney renin. Physiol Rev 90: 607673, 2010 PubMed

  • 50.

    Yang T, Xu C: Physiology and pathophysiology of the intrarenal renin-angiotensin system: an update. J Am Soc Nephrol 28: 10401049, 2017 PubMed

  • 51.

    Stankovic AR, Fisher NDL, Hollenberg NK: Prorenin and angiotensin-dependent renal vasoconstriction in type 1 and type 2 diabetes. J Am Soc Nephrol 17: 32933299, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Nguyen G, Delarue F, Burcklé C, Bouzhir L, Giller T, Sraer JD: Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109: 14171427, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Ichihara A, Yatabe MS: The (pro)renin receptor in health and disease. Nat Rev Nephrol 15: 693712, 2019 PubMed

  • 54.

    Riquier-Brison ADM, Sipos A, Prókai Á, Vargas SL, Toma L, Meer EJ, .: The macula densa prorenin receptor is essential in renin release and blood pressure control. Am J Physiol Renal Physiol 315: F521F534, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, .: Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension 59: 10691078, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Schling P, Schäfer T: Human adipose tissue cells keep tight control on the angiotensin II levels in their vicinity. J Biol Chem 277: 4806648075, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Yiannikouris F, Karounos M, Charnigo R, English VL, Rateri DL, Daugherty A, .: Adipocyte-specific deficiency of angiotensinogen decreases plasma angiotensinogen concentration and systolic blood pressure in mice. Am J Physiol Regul Integr Comp Physiol 302: R244R251, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Yiannikouris F, Gupte M, Putnam K, Thatcher S, Charnigo R, Rateri DL, .: Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice. Hypertension 60: 15241530, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Wu CH, Mohammadmoradi S, Thompson J, Su W, Gong M, Nguyen G, .: Adipocyte (pro)renin-receptor deficiency induces lipodystrophy, liver steatosis and increases blood pressure in male mice. Hypertension 68: 213219, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Gatineau E, Cohn DM, Poglitsch M, Loria AS, Gong M, Yiannikouris F: Losartan prevents the elevation of blood pressure in adipose-PRR deficient female mice while elevated circulating sPRR activates the renin-angiotensin system. Am J Physiol Heart Circ Physiol 316: H506H515, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Levy D, DeStefano AL, Larson MG, O'Donnell CJ, Lifton RP, Gavras H, . Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham heart study. Hypertension 36: 477483, 2000 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Hopkins PN, Hunt SC. Genetics of hypertension. Genet Med 5: 413429, 2003 PubMed

  • 63.

    Samani NJ: Genome scans for hypertension and blood pressure regulation. Am J Hypertens 16: 167171, 2003 PubMed

  • 64.

    Cooper RS, Guo X, Rotimi CN, Luke A, Ward R, Adeyemo A, .: Heritability of angiotensin-converting enzyme and angiotensinogen: a comparison of US blacks and Nigerians. Hypertension 35: 11411147, 2000 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, .; Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478: 103109, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Ehret GB, Ferreira T, Chasman DI, Jacks103on AU, Schmidt EM, Johnson T, .; CHARGE-EchoGen consortium; CHARGE-HF consortium; Wellcome Trust Case Control Consortium: The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet 48: 11711184, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Surendran P, Drenos F, Young R, Warren H, Cook JP, Manning AK, .; CHARGE-Heart Failure Consortium; EchoGen Consortium; METASTROKE Consortium; GIANT Consortium; EPIC-InterAct Consortium; Lifelines Cohort Study; Wellcome Trust Case Control Consortium; Understanding Society Scientific Group; EPIC-CVD Consortium; CHARGE+ Exome Chip Blood Pressure Consortium; T2D-GENES Consortium; GoT2DGenes Consortium; ExomeBP Consortium; CHD Exome+ Consortium: Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet 48: 11511161, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, .: A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 41: 527534, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, .: Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet 43: 531538, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Kato N, Loh M, Takeuchi F, Verweij N, Wang X, Zhang W, .; BIOS-consortium; CARDIo GRAMplusCD; LifeLines Cohort Study; InterAct Consortium: Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat Genet 47: 12821293, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Liu C, Kraja AT, Smith JA, Brody JA, Franceschini N, Bis JC, .; CHD Exome+ Consortium; ExomeBP Consortium; GoT2DGenes Consortium; T2D-GENES Consortium; Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia; CKDGen Consortium: Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat Genet 48: 11621170, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, .; International Consortium of Blood Pressure (ICBP) 1000G Analyses; BIOS Consortium; Lifelines Cohort Study; Understanding Society Scientific group; CHD Exome+ Consortium; ExomeBP Consortium; T2D-GENES Consortium; GoT2DGenes Consortium; Cohorts for Heart and Ageing Research in Genome Epidemiology (CHARGE) BP Exome Consortium; International Genomics of Blood Pressure (iGEN-BP) Consortium; UK Biobank CardioMetabolic Consortium BP working group: Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet 49: 403415, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Cicila GT, Rapp JP, Wang JM, St Lezin E, Ng SC, Kurtz TW: Linkage of 11 beta-hydroxylase mutations with altered steroid biosynthesis and blood pressure in the Dahl rat. Nat Genet 3: 346353, 1993 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Crespo K, Chauvet C, Blain M, Ménard A, Roy J, Deng AY: Normotension in Lewis and Dahl salt-resistant rats is governed by different genes. J Hypertens 29: 460465, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    White PC. Inherited forms of mineralocorticoid hypertension. Hypertension 1996;28:927-36.

  • 76.

    Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, .: A chimaeric 11 β-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 355: 262265, 1992 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Lifton RP, Dluhy RG, Powers M, Rich GM, Gutkin M, Fallo F, .: Hereditary hypertension caused by chimaeric gene duplications and ectopic expression of aldosterone synthase. Nat Genet 2: 6674, 1992 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Kiang KM, Leung GK: A review on adducin from functional to pathological mechanisms: future direction in cancer. BioMed Res Int 2018: 3465929, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Kaiser HW, O’Keefe E, Bennett V: Adducin: Ca++-dependent association with sites of cell-cell contact. J Cell Biol 109: 557569, 1989 PubMed

  • 80.

    Cusi D, Barlassina C, Azzani T, Casari G, Citterio L, Devoto M, .: Polymorphisms of alpha-adducin and salt sensitivity in patients with essential hypertension. Lancet 349: 13531357, 1997 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Bianchi G, Tripodi G, Casari G, Salardi S, Barber BR, Garcia R, .: Two point mutations within the adducin genes are involved in blood pressure variation. Proc Natl Acad Sci U S A 91: 39994003, 1994 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Torielli L, Tivodar S, Montella RC, Iacone R, Padoani G, Tarsini P, .: Alpha-adducin mutations increase Na/K pump activity in renal cells by affecting constitutive endocytosis: implications for tubular Na reabsorption. Am J Physiol Renal Physiol 295: F478F487, 2008 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Rossier BC, Bochud M, Devuyst O: The hypertension pandemic: an evolutionary perspective. Physiology (Bethesda) 32: 112125, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 84.

    Garrison RJ, Kannel WB, Stokes J 3rd, Castelli WP: Incidence and precursors of hypertension in young adults: the Framingham Offspring Study. Prev Med 16: 235251, 1987 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME: Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol 15: 367385, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM: Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 42: 878884, 2003 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Ohashi K, Kihara S, Ouchi N, Kumada M, Fujita K, Hiuge A, .: Adiponectin replenishment ameliorates obesity-related hypertension. Hypertension 47: 11081116, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Mark AL, Agassandian K, Morgan DA, Liu X, Cassell MD, Rahmouni K: Leptin signaling in the nucleus tractus solitarii increases sympathetic nerve activity to the kidney. Hypertension 53: 375380, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    Ding W, Cheng H, Chen F, Yan Y, Zhang M, Zhao X, .: Adipokines are associated with hypertension in metabolically healthy obese (MHO) children and adolescents: a prospective population-based cohort study. J Epidemiol 28: 1926, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Havas S, Roccella EJ, Lenfant C: Reducing the public health burden from elevated blood pressure levels in the United States by lowering intake of dietary sodium. Am J Public Health 94: 1922, 2004 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    He FJ, Pombo-Rodrigues S, Macgregor GA: Salt reduction in England from 2003 to 2011: its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open 4: e004549–e004549, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Mente A, O’Donnell MJ, Rangarajan S, McQueen MJ, Poirier P, Wielgosz A, .; PURE Investigators: Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med 371: 601611, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S, Engell RE, .; Global Burden of Diseases Nutrition and Chronic Diseases Expert Group: Global sodium consumption and death from cardiovascular causes. N Engl J Med 371: 624634, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    McDonough AA, Veiras LC, Guevara CA, Ralph DL: Cardiovascular benefits associated with higher dietary K+ vs. lower dietary Na+: evidence from population and mechanistic studies. Am J Physiol Endocrinol Metab 312: E348E356, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95.

    Clase CM, Carrero JJ, Ellison DH, Grams ME, Hemmelgarn BR, Jardine MJ, .; Conference Participants: Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int 97: 4261, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    Gritter M, Rotmans JI, Hoorn EJ: Role of dietary K+ in natriuresis, blood pressure reduction, cardiovascular protection, and renoprotection. Hypertension 73: 1523, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97.

    Araki S, Haneda M, Koya D, Kondo K, Tanaka S, Arima H, .: Urinary potassium excretion and renal and cardiovascular complications in patients with type 2 diabetes and normal renal function. Clin J Am Soc Nephrol 10: 21522158, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98.

    Mun KH, Yu GI, Choi BY, Kim MK, Shin MH, Shin DH: Association of dietary potassium intake with the development of chronic kidney disease and renal function in patients with mildly decreased kidney function: the Korean multi-rural communities cohort study. Med Sci Monit 25: 10611070, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Mente A, O’Donnell M, Rangarajan S, Dagenais G, Lear S, McQueen M, .; PURE, EPIDREAM and ONTARGET/TRANSCEND Investigators: Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet 388: 465475, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100.

    National Academies of Sciences, Engineering, and Medicine. Dietary Reference Intakes for sodium and potassium, Washington, DC, The National Academies Press, 2019

    • Search Google Scholar
    • Export Citation
  • 101.

    Newberry SJ, Chung M, Anderson CAM, Chen C, Fu Z, Tang A, .: Sodium and Potassium Intake: Effects on Chronic Disease Outcomes and Risks. In: Comparative Effectiveness Review, No. 206. Rockville, MD, Agency for Healthcare Research and Quality, 2018

    • Search Google Scholar
    • Export Citation
  • 102.

    Governing Board of the National Research Council: Dietary Reference Intakes: The essential guide to nutrient requirements, National Academy of Sciences, 2006

    • Search Google Scholar
    • Export Citation
  • 103.

    Lamelas PM, Mente A, Diaz R, Orlandini A, Avezum A, Oliveira G, .: Association of urinary sodium excretion with blood pressure and cardiovascular clinical events in 17,033 Latin Americans. Am J Hypertens 29: 796805, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 104.

    Cogswell ME, Mugavero K, Bowman BA, Frieden TR: Dietary sodium and cardiovascular disease risk: measurement matters. N Engl J Med 375: 580586, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105.

    Anderson CAM, Appel LJ, Okuda N, Brown IJ, Chan Q, Zhao L, .: Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40 to 59 years: the INTERMAP study. J Am Diet Assoc 110: 736745, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 106.

    Weiss JN, Qu Z, Shivkumar K: Electrophysiology of hypokalemia and hyperkalemia. Circ Arrhythm Electrophysiol 10: e004667, 2017 PubMed

  • 107.

    Gritter M, Vogt L, Yeung SMH, Wouda RD, Ramakers CRB, de Borst MH, .: Rationale and design of a randomized placebo-controlled clinical trial assessing the renoprotective effects of potassium supplementation in chronic kidney disease. Nephron 140: 4857, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 108.

    Elliott P, Dyer A, Stamler R; INTERSALT Co-operative Research Group: The INTERSALT study: results for 24 hour sodium and potassium, by age and sex. J Hum Hypertens 3: 323330, 1989 PubMed

    • Search Google Scholar
    • Export Citation
  • 109.

    Yang Q, Liu T, Kuklina EV, Flanders WD, Hong Y, Gillespie C, .: Sodium and potassium intake and mortality among US adults: prospective data from the third national health and nutrition examination survey. Arch Intern Med 171: 11831191, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 110.

    Kieneker LM, Gansevoort RT, Mukamal KJ, de Boer RA, Navis G, Bakker SJL, . Urinary potassium excretion and risk of developing hypertension: the prevention of renal and vascular end-stage disease study. Hypertension 64: 769776, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 111.

    Kim HW, Park JT, Yoo TH, Lee J, Chung W, Lee KB, .; KNOW-CKD Study Investigators: Urinary potassium excretion and progression of CKD. Clin J Am Soc Nephrol 14: 330340, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 112.

    Juraschek SP, Miller ER 3rd, Weaver CM, Appel LJ: Effects of sodium reduction and the DASH Diet in relation to baseline blood pressure. J Am Coll Cardiol 70: 28412848, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 113.

    McDonough AA, Youn JH: Potassium homeostasis: the knowns, the unknowns, and the health benefits. Physiology (Bethesda) 32: 100111, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 114.

    Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang C, Meermeier NP, .: Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab 21: 3950, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 115.

    McDonough AA, Youn JH: Need to quickly excrete K(+)? Turn off NCC. Kidney Int 83: 779782, 2013 PubMed

  • 116.

    Yang L, Xu S, Guo X, Uchida S, Weinstein AM, Wang T, .: Regulation of renal Na transporters in response to dietary K. Am J Physiol Renal Physiol 315: F1032F1041, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 117.

    Krupp D, Esche J, Mensink GBM, Klenow S, Thamm M, Remer T: Dietary acid load and potassium intake associate with blood pressure and hypertension prevalence in a representative sample of the German adult population. Nutrients 10: 103, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 118.

    Institute of Medicine: Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate, Washington, DC, National Academies Press, 2005

    • Search Google Scholar
    • Export Citation
  • 119.

    Neal B, Tian M, Li N, Elliott P, Yan LL, Labarthe DR, .: Rationale, design, and baseline characteristics of the salt substitute and stroke study (SSaSS): a large-scale cluster randomized controlled trial. Am Heart J 188: 109117, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 120.

    Drewnowski A, Rehm CD, Maillot M, Monsivais P: The relation of potassium and sodium intakes to diet cost among U.S. adults. J Hum Hypertens 29: 1421, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 121.

    Pearson-Stuttard J, Bandosz P, Rehm CD, Penalvo J, Whitsel L, Gaziano T, .: Reducing US cardiovascular disease burden and disparities through national and targeted dietary policies: a modelling study. PLoS Med 14: e1002311, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 122.

    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, .; American Heart Association Statistics Committee and Stroke Statistics Subcommittee: Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 129: e28e292, 2014 PubMed

    • Search Google Scholar
    • Export Citation
  • 123.

    Babelova A, Burckhardt BC, Wegner W, Burckhardt G, Henjakovic M: Sex-differences in renal expression of selected transporters and transcription factors in lean and obese Zucker spontaneously hypertensive fatty rats. J Diabetes Res 2015: 483238, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 124.

    Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, .: 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension 71: e13e115, 2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 125.

    Maric-Bilkan C, Arnold AP, Taylor DA, Dwinell M, Howlett SE, Wenger N, . Report of the National Heart, Lung, and Blood Institute working group on sex differences research in cardiovascular disease: scientific questions and challenges. Hypertension 67: 802807, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 126.

    Mannon EC, Ray SC, Ryan MJ, Sullivan JC: Does sex matter?: an update on the implementation of sex as a biological variable in research. Am J Physiol Renal Physiol 318: F329F331, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 127.

    Veiras LC, Girardi ACC, Curry J, Pei L, Ralph DL, Tran A, .: Sexual dimorphic pattern of renal transporters and electrolyte homeostasis. J Am Soc Nephrol 28: 35043517, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 128.

    Hu R, McDonough AA, Layton AT: Functional implications of the sex differences in transporter abundance along the rat nephron: modeling and analysis. Am J Physiol Renal Physiol 317: F1462F1474, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 129.

    Li Q, McDonough AA, Layton HE, Layton AT: Functional implications of sexual dimorphism of transporter patterns along the rat proximal tubule: modeling and analysis. Am J Physiol Renal Physiol 315: F692F700, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 130.

    Edwards A, McDonough AA: Impact of angiotensin II-mediated stimulation of sodium transporters in the nephron assessed by computational modeling. Am J Physiol Renal Physiol 317: F1656F1668, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 131.

    Sabolic I, Vrhovac I, Eror DB, Gerasimova M, Rose M, Breljak D, .: Expression of Na+-D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am J Physiol Cell Physiol 302: C1174C1188, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 132.

    Veiras LC, McFarlin BE, Ralph DL, Buncha V, Prescott J, Shirvani BS, .: Electrolyte and transporter responses to angiotensin II induced hypertension in female and male rats and mice. Acta Physiol (Oxf) 229: e13448, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 133.

    He J, Gu D, Chen J, Jaquish CE, Rao DC, Hixson JE, .; GenSalt Collaborative Research Group: Gender difference in blood pressure responses to dietary sodium intervention in the GenSalt study. J Hypertens 27: 4854, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 134.

    USDA Agricultural Research Services 2019. Usual Nutrient Intake from Food and Beverages, by Gender and Age, What We Eat in America, NHANES 2013-2016. Available at: www.ars.usda.gov/nea/bhnrc/fsrg. Accessed May 6, 2020.

  • 135.

    Vaidya A, Mulatero P, Baudrand R, Adler GK: The expanding spectrum of primary aldosteronism: implications for diagnosis, pathogenesis, and treatment. Endocr Rev 39: 10571088, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 136.

    Herrmann SM, Textor SC: Current concepts in the treatment of renovascular hypertension. Am J Hypertens 31: 139149, 2018 PubMed

  • 137.

    Coen G, Manni M, Giannoni MF, Bianchini G, Calabria S, Mantella D, .: Ischemic nephropathy in an elderly nephrologic and hypertensive population. Am J Nephrol 18: 221227, 1998 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 138.

    Gloviczki ML, Glockner JF, Lerman LO, McKusick MA, Misra S, Grande JP, .: Preserved oxygenation despite reduced blood flow in poststenotic kidneys in human atherosclerotic renal artery stenosis. Hypertension 55: 961966, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 139.

    Greite R, Thorenz A, Chen R, Jang MS, Rong S, Brownstein MJ, .: Renal ischemia-reperfusion injury causes hypertension and renal perfusion impairment in the CD1 mice which promotes progressive renal fibrosis. Am J Physiol Renal Physiol 314: F881F892, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 140.

    Pechman KR, De Miguel C, Lund H, Leonard EC, Basile DP, Mattson DL: Recovery from renal ischemia-reperfusion injury is associated with altered renal hemodynamics, blunted pressure natriuresis, and sodium-sensitive hypertension. Am J Physiol Regul Integr Comp Physiol 297: R1358R1363, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 141.

    Kelly KJ, Williams WWJ Jr, Colvin RB, Meehan SM, Springer TA, Gutierrez-Ramos JC, .: Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97: 10561063, 1996 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 142.

    Kinsey GR, Okusa MD: Role of leukocytes in the pathogenesis of acute kidney injury. Crit Care 16: 214, 2012 PubMed

  • 143.

    Abe C, Inoue T, Inglis MA, Viar KE, Huang L, Ye H, .: C1 neurons mediate a stress-induced anti-inflammatory reflex in mice. Nat Neurosci 20: 700707, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 144.

    Inoue T, Abe C, Sung SS, Moscalu S, Jankowski J, Huang L, .: Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes. J Clin Invest 126: 19391952, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 145.

    Gigliotti JC, Huang L, Bajwa A, Ye H, Mace EH, Hossack JA, .: Ultrasound modulates the splenic neuroimmune axis in attenuating AKI. J Am Soc Nephrol 26: 24702481, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 146.

    Gigliotti JC, Huang L, Ye H, Bajwa A, Chattrabhuti K, Lee S, .: Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J Am Soc Nephrol 24: 14511460, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 147.

    Neumann HPH, Young WF Jr, Eng C: Pheochromocytoma and paraganglioma. N Engl J Med 381: 552565, 2019 PubMed

  • 148.

    Pappachan JM, Tun NN, Arunagirinathan G, Sodi R, Hanna FWF: Pheochromocytoma and hypertension. Curr Hypertens Rep 20: 3, 2018 PubMed

Metrics

All Time Past Year Past 30 Days
Abstract Views 1363 1363 45
Full Text Views 1228 1227 85
PDF Downloads 651 651 35