Mechanism and Pathophysiology
View More View Less
  • 1 Department of Physiology and Pharmacology, Liberty University College of Osteopathic Medicine, Lynchburg, Virginia
  • | 2 Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York
  • | 3 Department of Physiology and Neuroscience, Keck School of Medicine of USC, Los Angeles, California
  • 1.

    Pazoki R, Dehghan A, Evangelou E, Warren H, Gao H, Caulfield M, et al..: Genetic predisposition to high blood pressure and lifestyle factors: associations with midlife blood pressure levels and cardiovascular events. Circulation 137: 653661, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Artamonov MV, Sonkusare SK, Good ME, Momotani K, Eto M, Isakson BE, et al.. RSK2 contributes to myogenic vasoconstriction of resistance arteries by activating smooth muscle myosin and the Na(+)/H(+) exchanger [published online ahead of print Oct 30, 2018]. Sci Signal $ $ doi:10.1126/scisignal.aar3924.PubMed

    • Search Google Scholar
    • Export Citation
  • 3.

    Straub AC, Zeigler AC, Isakson BE: The myoendothelial junction: connections that deliver the message. Physiology (Bethesda) 29: 242249, 2014 PubMed

    • Search Google Scholar
    • Export Citation
  • 4.

    Good ME, Musante L, La Salvia S, Howell NL, Carey RM, Le TH, et al..: Circulating extracellular vesicles in normotension restrain vasodilation in resistance arteries. Hypertension 75: 218228, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Sandow SL, Senadheera S, Bertrand PP, Murphy TV, Tare M: Myoendothelial contacts, gap junctions, and microdomains: anatomical links to function? Microcirculation 19: 403415, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Maarouf N, Sancho M, Fürstenhaupt T, Tran CH, Welsh DG: Structural analysis of endothelial projections from mesenteric arteries. Microcirculation 24: 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Lechauve C, Butcher JT, Freiwan A, Biwer LA, Keith JM, Good ME, et al..: Endothelial cell α-globin and its molecular chaperone α-hemoglobin-stabilizing protein regulate arteriolar contractility. J Clin Invest 128: 50735082, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Johnson AK, Xue B: Central nervous system neuroplasticity and the sensitization of hypertension. Nat Rev Nephrol 14: 750766, 2018 PubMed

  • 9.

    Guyenet PG, Stornetta RL, Holloway BB, Souza GMPR, Abbott SBG: Rostral ventrolateral medulla and hypertension. Hypertension 72: 559566, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Guyenet PG: The sympathetic control of blood pressure. Nat Rev Neurosci 7: 335346, 2006 PubMed

  • 11.

    Grassi G, Mark A, Esler M: The sympathetic nervous system alterations in human hypertension. Circ Res 116: 976990, 2015 PubMed

  • 12.

    Dampney RAL: Resetting of the baroreflex control of sympathetic vasomotor activity during natural behaviors: description and conceptual model of central mechanisms. Front Neurosci 11: 461, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Xue B, Zhang Z, Johnson RF, Johnson AK: Sensitization of slow pressor angiotensin II (Ang II)-initiated hypertension: induction of sensitization by prior Ang II treatment. Hypertension 59: 459466, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Edmondson D, von Känel R: Post-traumatic stress disorder and cardiovascular disease. Lancet Psychiatry 4: 320329, 2017 PubMed

  • 15.

    Mansukhani MP, Covassin N, Somers VK: Apneic sleep, insufficient sleep, and hypertension. Hypertension 73: 744756, 2019 PubMed

  • 16.

    Somers VK, Dyken ME, Clary MP, Abboud FM: Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 96: 18971904, 1995 PubMed

  • 17.

    Fava C, Dorigoni S, Dalle Vedove F, Danese E, Montagnana M, Guidi GC, et al..: Effect of CPAP on blood pressure in patients with OSA/hypopnea a systematic review and meta-analysis. Chest 145: 762771, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Prabhakar NR: Carotid body chemoreflex: a driver of autonomic abnormalities in sleep apnoea. Exp Physiol 101: 975985, 2016 PubMed

  • 19.

    Takahashi K, Ueda S, Kobayashi T, Nishiyama A, Fujisawa Y, Sugaya T, et al..: Chronic intermittent hypoxia-mediated renal sympathetic nerve activation in hypertension and cardiovascular disease. Sci Rep 8: 17926, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Warchol-Celinska E, Prejbisz A, Kadziela J, Florczak E, Januszewicz M, Michalowska I, et al..: Renal denervation in resistant hypertension and obstructive sleep apnea: randomized proof-of-concept phase ii trial. Hypertension 72: 381390, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Aziz M, Amar L, Lorthioir A: Resistant hypertension and obstructive sleep apnea: is there a specific indication for endovascular renal denervation? Hypertension 72: 281282, 2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Calvillo L, Gironacci MM, Crotti L, Meroni PL, Parati G: Neuroimmune crosstalk in the pathophysiology of hypertension. Nat Rev Cardiol 16: 476490, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Norlander AE, Madhur MS, Harrison DG: The immunology of hypertension. J Exp Med 215: 2133, 2018 PubMed

  • 24.

    Wilck N, Balogh A, Markó L, Bartolomaeus H, Müller DN: The role of sodium in modulating immune cell function. Nat Rev Nephrol 15: 546558, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Mattson DL: Immune mechanisms of salt-sensitive hypertension and renal end-organ damage. Nat Rev Nephrol 15: 290300, 2019 PubMed

  • 26.

    Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al..: Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204: 24492460, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Trott DW, Thabet SR, Kirabo A, Saleh MA, Itani H, Norlander AE, et al..: Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension 64: 11081115, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Kirabo A, Fontana V, de Faria AP, Loperena R, Galindo CL, Wu J, et al..: DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest 124: 46424656, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Van Beusecum JP, Barbaro NR, McDowell Z, Aden LA, Xiao L, Pandey AK, et al..: High salt activates CD11c+ antigen-presenting cells via SGK (serum glucocorticoid kinase) 1 to promote renal inflammation and salt-sensitive hypertension. Hypertension 74: 555563, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Ferguson JF, Aden LA, Barbaro NR, Van Beusecum JP, Xiao L, Simmons AJ, et al..: High dietary salt-induced dendritic cell activation underlies microbial dysbiosis-associated hypertension. JCI Insight 5: e126241, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Touyz RM: The neuroimmune axis in the kidney: role in hypertension. Circ Res 117: 487489, 2015 PubMed

  • 32.

    Xiao L, Kirabo A, Wu J, Saleh MA, Zhu L, Wang F, et al..: Renal denervation prevents immune cell activation and renal inflammation in angiotensin II-induced hypertension. Circ Res 117: 547557, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Krum H, Schlaich MP, Sobotka PA, Böhm M, Mahfoud F, Rocha-Singh K, et al..: Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet 383: 622629, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Esler MD, Böhm M, Sievert H, Rump CL, Schmieder RE, Krum H, et al..: Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur Heart J 35: 17521759, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al..; SYMPLICITY HTN-3 Investigators: A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370: 13931401, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA, et al..; SPYRAL HTN-OFF MED trial investigators*: Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 390: 21602170, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Kandzari DE, Böhm M, Mahfoud F, Townsend RR, Weber MA, Pocock S, et al..; SPYRAL HTN-ON MED Trial Investigators: Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 391: 23462355, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Davies J, et al..; RADIANCE-HTN Investigators: Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet 391: 23352345, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Fengler K, Rommel KP, Blazek S, Besler C, Hartung P, von Roeder M, et al..: A three-arm randomized trial of different renal denervation devices and techniques in patients with resistant hypertension (RADIOSOUND-HTN). Circulation 139: 590600, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Böhm M, Kario K, Kandzari DE, Mahfoud F, Weber MA, Schmieder RE, et al..; SPYRAL HTN-OFF MED Pivotal Investigators: Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED pivotal): a multicentre, randomised, sham-controlled trial [published online ahead of print Mar 27 2020]. Lancet doi: 10.1016/S0140-6736(20)30554-7, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Carnevale D, Perrotta M, Pallante F, Fardella V, Iacobucci R, Fardella S, et al..: A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nat Commun 7: 13035, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Lu H, Cassis LA, Kooi CWV, Daugherty A. Structure and functions of angiotensin. Hypertens Res 39: 492500, 2016 PubMed

  • 43.

    Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, et al..: International Union of Basic and Clinical Pharmacology. XCIX. angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli [corrected]. Pharmacol Rev 67: 754819, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Schütten MT, Houben AJ, de Leeuw PW, Stehouwer CD: The link between adipose tissue renin-angiotensin-aldosterone system signaling and obesity-associated hypertension. Physiology (Bethesda) 32: 197209, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 45.

    Kobori H, Nangaku M, Navar LG, Nishiyama A: The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59: 251287, 2007 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Ferrario CM, Ahmad S, Varagic J, Cheng CP, Groban L, Wang H, et al..: Intracrine angiotensin II functions originate from noncanonical pathways in the human heart. Am J Physiol Heart Circ Physiol 311: H404H414, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Ramkumar N, Kohan DE: The (pro)renin receptor: an emerging player in hypertension and metabolic syndrome. Kidney Int 95: 10411052, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Nguyen G, Muller DN: The biology of the (pro)renin receptor. J Am Soc Nephrol 21: 1823, 2010 PubMed

  • 49.

    Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C: Physiology of kidney renin. Physiol Rev 90: 607673, 2010 PubMed

  • 50.

    Yang T, Xu C: Physiology and pathophysiology of the intrarenal renin-angiotensin system: an update. J Am Soc Nephrol 28: 10401049, 2017 PubMed

  • 51.

    Stankovic AR, Fisher NDL, Hollenberg NK: Prorenin and angiotensin-dependent renal vasoconstriction in type 1 and type 2 diabetes. J Am Soc Nephrol 17: 32933299, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Nguyen G, Delarue F, Burcklé C, Bouzhir L, Giller T, Sraer JD: Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109: 14171427, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Ichihara A, Yatabe MS: The (pro)renin receptor in health and disease. Nat Rev Nephrol 15: 693712, 2019 PubMed

  • 54.

    Riquier-Brison ADM, Sipos A, Prókai Á, Vargas SL, Toma L, Meer EJ, et al..: The macula densa prorenin receptor is essential in renin release and blood pressure control. Am J Physiol Renal Physiol 315: F521F534, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, et al..: Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension 59: 10691078, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Schling P, Schäfer T: Human adipose tissue cells keep tight control on the angiotensin II levels in their vicinity. J Biol Chem 277: 4806648075, 2002 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Yiannikouris F, Karounos M, Charnigo R, English VL, Rateri DL, Daugherty A, et al..: Adipocyte-specific deficiency of angiotensinogen decreases plasma angiotensinogen concentration and systolic blood pressure in mice. Am J Physiol Regul Integr Comp Physiol 302: R244R251, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Yiannikouris F, Gupte M, Putnam K, Thatcher S, Charnigo R, Rateri DL, et al..: Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice. Hypertension 60: 15241530, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Wu CH, Mohammadmoradi S, Thompson J, Su W, Gong M, Nguyen G, et al..: Adipocyte (pro)renin-receptor deficiency induces lipodystrophy, liver steatosis and increases blood pressure in male mice. Hypertension 68: 213219, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Gatineau E, Cohn DM, Poglitsch M, Loria AS, Gong M, Yiannikouris F: Losartan prevents the elevation of blood pressure in adipose-PRR deficient female mice while elevated circulating sPRR activates the renin-angiotensin system. Am J Physiol Heart Circ Physiol 316: H506H515, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Levy D, DeStefano AL, Larson MG, O'Donnell CJ, Lifton RP, Gavras H, et al.. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham heart study. Hypertension 36: 477483, 2000 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Hopkins PN, Hunt SC. Genetics of hypertension. Genet Med 5: 413429, 2003 PubMed

  • 63.

    Samani NJ: Genome scans for hypertension and blood pressure regulation. Am J Hypertens 16: 167171, 2003 PubMed

  • 64.

    Cooper RS, Guo X, Rotimi CN, Luke A, Ward R, Adeyemo A, et al..: Heritability of angiotensin-converting enzyme and angiotensinogen: a comparison of US blacks and Nigerians. Hypertension 35: 11411147, 2000 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al..; Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478: 103109, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Ehret GB, Ferreira T, Chasman DI, Jacks103on AU, Schmidt EM, Johnson T, et al..; CHARGE-EchoGen consortium; CHARGE-HF consortium; Wellcome Trust Case Control Consortium: The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet 48: 11711184, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Surendran P, Drenos F, Young R, Warren H, Cook JP, Manning AK, et al..; CHARGE-Heart Failure Consortium; EchoGen Consortium; METASTROKE Consortium; GIANT Consortium; EPIC-InterAct Consortium; Lifelines Cohort Study; Wellcome Trust Case Control Consortium; Understanding Society Scientific Group; EPIC-CVD Consortium; CHARGE+ Exome Chip Blood Pressure Consortium; T2D-GENES Consortium; GoT2DGenes Consortium; ExomeBP Consortium; CHD Exome+ Consortium: Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet 48: 11511161, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, et al..: A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 41: 527534, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, et al..: Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet 43: 531538, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Kato N, Loh M, Takeuchi F, Verweij N, Wang X, Zhang W, et al..; BIOS-consortium; CARDIo GRAMplusCD; LifeLines Cohort Study; InterAct Consortium: Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat Genet 47: 12821293, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Liu C, Kraja AT, Smith JA, Brody JA, Franceschini N, Bis JC, et al..; CHD Exome+ Consortium; ExomeBP Consortium; GoT2DGenes Consortium; T2D-GENES Consortium; Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia; CKDGen Consortium: Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat Genet 48: 11621170, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, et al..; International Consortium of Blood Pressure (ICBP) 1000G Analyses; BIOS Consortium; Lifelines Cohort Study; Understanding Society Scientific group; CHD Exome+ Consortium; ExomeBP Consortium; T2D-GENES Consortium; GoT2DGenes Consortium; Cohorts for Heart and Ageing Research in Genome Epidemiology (CHARGE) BP Exome Consortium; International Genomics of Blood Pressure (iGEN-BP) Consortium; UK Biobank CardioMetabolic Consortium BP working group: Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet 49: 403415, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Cicila GT, Rapp JP, Wang JM, St Lezin E, Ng SC, Kurtz TW: Linkage of 11 beta-hydroxylase mutations with altered steroid biosynthesis and blood pressure in the Dahl rat. Nat Genet 3: 346353, 1993 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Crespo K, Chauvet C, Blain M, Ménard A, Roy J, Deng AY: Normotension in Lewis and Dahl salt-resistant rats is governed by different genes. J Hypertens 29: 460465, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    White PC. Inherited forms of mineralocorticoid hypertension. Hypertension 1996;28:927-36.

  • 76.

    Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al..: A chimaeric 11 β-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 355: 262265, 1992 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Lifton RP, Dluhy RG, Powers M, Rich GM, Gutkin M, Fallo F, et al..: Hereditary hypertension caused by chimaeric gene duplications and ectopic expression of aldosterone synthase. Nat Genet 2: 6674, 1992 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Kiang KM, Leung GK: A review on adducin from functional to pathological mechanisms: future direction in cancer. BioMed Res Int 2018: 3465929, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Kaiser HW, O’Keefe E, Bennett V: Adducin: Ca++-dependent association with sites of cell-cell contact. J Cell Biol 109: 557569, 1989 PubMed

  • 80.

    Cusi D, Barlassina C, Azzani T, Casari G, Citterio L, Devoto M, et al..: Polymorphisms of alpha-adducin and salt sensitivity in patients with essential hypertension. Lancet 349: 13531357, 1997 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Bianchi G, Tripodi G, Casari G, Salardi S, Barber BR, Garcia R, et al..: Two point mutations within the adducin genes are involved in blood pressure variation. Proc Natl Acad Sci U S A 91: 39994003, 1994 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Torielli L, Tivodar S, Montella RC, Iacone R, Padoani G, Tarsini P, et al..: Alpha-adducin mutations increase Na/K pump activity in renal cells by affecting constitutive endocytosis: implications for tubular Na reabsorption. Am J Physiol Renal Physiol 295: F478F487, 2008 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Rossier BC, Bochud M, Devuyst O: The hypertension pandemic: an evolutionary perspective. Physiology (Bethesda) 32: 112125, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 84.

    Garrison RJ, Kannel WB, Stokes J 3rd, Castelli WP: Incidence and precursors of hypertension in young adults: the Framingham Offspring Study. Prev Med 16: 235251, 1987 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME: Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol 15: 367385, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM: Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 42: 878884, 2003 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Ohashi K, Kihara S, Ouchi N, Kumada M, Fujita K, Hiuge A, et al..: Adiponectin replenishment ameliorates obesity-related hypertension. Hypertension 47: 11081116, 2006 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Mark AL, Agassandian K, Morgan DA, Liu X, Cassell MD, Rahmouni K: Leptin signaling in the nucleus tractus solitarii increases sympathetic nerve activity to the kidney. Hypertension 53: 375380, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    Ding W, Cheng H, Chen F, Yan Y, Zhang M, Zhao X, et al..: Adipokines are associated with hypertension in metabolically healthy obese (MHO) children and adolescents: a prospective population-based cohort study. J Epidemiol 28: 1926, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Havas S, Roccella EJ, Lenfant C: Reducing the public health burden from elevated blood pressure levels in the United States by lowering intake of dietary sodium. Am J Public Health 94: 1922, 2004 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    He FJ, Pombo-Rodrigues S, Macgregor GA: Salt reduction in England from 2003 to 2011: its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open 4: e004549–e004549, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Mente A, O’Donnell MJ, Rangarajan S, McQueen MJ, Poirier P, Wielgosz A, et al..; PURE Investigators: Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med 371: 601611, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S, Engell RE, et al..; Global Burden of Diseases Nutrition and Chronic Diseases Expert Group: Global sodium consumption and death from cardiovascular causes. N Engl J Med 371: 624634, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    McDonough AA, Veiras LC, Guevara CA, Ralph DL: Cardiovascular benefits associated with higher dietary K+ vs. lower dietary Na+: evidence from population and mechanistic studies. Am J Physiol Endocrinol Metab 312: E348E356, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95.

    Clase CM, Carrero JJ, Ellison DH, Grams ME, Hemmelgarn BR, Jardine MJ, et al..; Conference Participants: Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) controversies conference. Kidney Int 97: 4261, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    Gritter M, Rotmans JI, Hoorn EJ: Role of dietary K+ in natriuresis, blood pressure reduction, cardiovascular protection, and renoprotection. Hypertension 73: 1523, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97.

    Araki S, Haneda M, Koya D, Kondo K, Tanaka S, Arima H, et al..: Urinary potassium excretion and renal and cardiovascular complications in patients with type 2 diabetes and normal renal function. Clin J Am Soc Nephrol 10: 21522158, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98.

    Mun KH, Yu GI, Choi BY, Kim MK, Shin MH, Shin DH: Association of dietary potassium intake with the development of chronic kidney disease and renal function in patients with mildly decreased kidney function: the Korean multi-rural communities cohort study. Med Sci Monit 25: 10611070, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Mente A, O’Donnell M, Rangarajan S, Dagenais G, Lear S, McQueen M, et al..; PURE, EPIDREAM and ONTARGET/TRANSCEND Investigators: Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet 388: 465475, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100.

    National Academies of Sciences, Engineering, and Medicine. Dietary Reference Intakes for sodium and potassium, Washington, DC, The National Academies Press, 2019

    • Search Google Scholar
    • Export Citation
  • 101.

    Newberry SJ, Chung M, Anderson CAM, Chen C, Fu Z, Tang A, et al..: Sodium and Potassium Intake: Effects on Chronic Disease Outcomes and Risks. In: Comparative Effectiveness Review, No. 206. Rockville, MD, Agency for Healthcare Research and Quality, 2018

    • Search Google Scholar
    • Export Citation
  • 102.

    Governing Board of the National Research Council: Dietary Reference Intakes: The essential guide to nutrient requirements, National Academy of Sciences, 2006

    • Search Google Scholar
    • Export Citation
  • 103.

    Lamelas PM, Mente A, Diaz R, Orlandini A, Avezum A, Oliveira G, et al..: Association of urinary sodium excretion with blood pressure and cardiovascular clinical events in 17,033 Latin Americans. Am J Hypertens 29: 796805, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 104.

    Cogswell ME, Mugavero K, Bowman BA, Frieden TR: Dietary sodium and cardiovascular disease risk: measurement matters. N Engl J Med 375: 580586, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105.

    Anderson CAM, Appel LJ, Okuda N, Brown IJ, Chan Q, Zhao L, et al..: Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40 to 59 years: the INTERMAP study. J Am Diet Assoc 110: 736745, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 106.

    Weiss JN, Qu Z, Shivkumar K: Electrophysiology of hypokalemia and hyperkalemia. Circ Arrhythm Electrophysiol 10: e004667, 2017 PubMed

  • 107.

    Gritter M, Vogt L, Yeung SMH, Wouda RD, Ramakers CRB, de Borst MH, et al..: Rationale and design of a randomized placebo-controlled clinical trial assessing the renoprotective effects of potassium supplementation in chronic kidney disease. Nephron 140: 4857, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 108.

    Elliott P, Dyer A, Stamler R; INTERSALT Co-operative Research Group: The INTERSALT study: results for 24 hour sodium and potassium, by age and sex. J Hum Hypertens 3: 323330, 1989 PubMed

    • Search Google Scholar
    • Export Citation
  • 109.

    Yang Q, Liu T, Kuklina EV, Flanders WD, Hong Y, Gillespie C, et al..: Sodium and potassium intake and mortality among US adults: prospective data from the third national health and nutrition examination survey. Arch Intern Med 171: 11831191, 2011 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 110.

    Kieneker LM, Gansevoort RT, Mukamal KJ, de Boer RA, Navis G, Bakker SJL, et al.. Urinary potassium excretion and risk of developing hypertension: the prevention of renal and vascular end-stage disease study. Hypertension 64: 769776, 2014 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 111.

    Kim HW, Park JT, Yoo TH, Lee J, Chung W, Lee KB, et al..; KNOW-CKD Study Investigators: Urinary potassium excretion and progression of CKD. Clin J Am Soc Nephrol 14: 330340, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 112.

    Juraschek SP, Miller ER 3rd, Weaver CM, Appel LJ: Effects of sodium reduction and the DASH Diet in relation to baseline blood pressure. J Am Coll Cardiol 70: 28412848, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 113.

    McDonough AA, Youn JH: Potassium homeostasis: the knowns, the unknowns, and the health benefits. Physiology (Bethesda) 32: 100111, 2017 PubMed

    • Search Google Scholar
    • Export Citation
  • 114.

    Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang C, Meermeier NP, et al..: Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab 21: 3950, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 115.

    McDonough AA, Youn JH: Need to quickly excrete K(+)? Turn off NCC. Kidney Int 83: 779782, 2013 PubMed

  • 116.

    Yang L, Xu S, Guo X, Uchida S, Weinstein AM, Wang T, et al..: Regulation of renal Na transporters in response to dietary K. Am J Physiol Renal Physiol 315: F1032F1041, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 117.

    Krupp D, Esche J, Mensink GBM, Klenow S, Thamm M, Remer T: Dietary acid load and potassium intake associate with blood pressure and hypertension prevalence in a representative sample of the German adult population. Nutrients 10: 103, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 118.

    Institute of Medicine: Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate, Washington, DC, National Academies Press, 2005

    • Search Google Scholar
    • Export Citation
  • 119.

    Neal B, Tian M, Li N, Elliott P, Yan LL, Labarthe DR, et al..: Rationale, design, and baseline characteristics of the salt substitute and stroke study (SSaSS): a large-scale cluster randomized controlled trial. Am Heart J 188: 109117, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 120.

    Drewnowski A, Rehm CD, Maillot M, Monsivais P: The relation of potassium and sodium intakes to diet cost among U.S. adults. J Hum Hypertens 29: 1421, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 121.

    Pearson-Stuttard J, Bandosz P, Rehm CD, Penalvo J, Whitsel L, Gaziano T, et al..: Reducing US cardiovascular disease burden and disparities through national and targeted dietary policies: a modelling study. PLoS Med 14: e1002311, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 122.

    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al..; American Heart Association Statistics Committee and Stroke Statistics Subcommittee: Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 129: e28e292, 2014 PubMed

    • Search Google Scholar
    • Export Citation
  • 123.

    Babelova A, Burckhardt BC, Wegner W, Burckhardt G, Henjakovic M: Sex-differences in renal expression of selected transporters and transcription factors in lean and obese Zucker spontaneously hypertensive fatty rats. J Diabetes Res 2015: 483238, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 124.

    Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al..: 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension 71: e13e115, 2018 PubMed

    • Search Google Scholar
    • Export Citation
  • 125.

    Maric-Bilkan C, Arnold AP, Taylor DA, Dwinell M, Howlett SE, Wenger N, et al.. Report of the National Heart, Lung, and Blood Institute working group on sex differences research in cardiovascular disease: scientific questions and challenges. Hypertension 67: 802807, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 126.

    Mannon EC, Ray SC, Ryan MJ, Sullivan JC: Does sex matter?: an update on the implementation of sex as a biological variable in research. Am J Physiol Renal Physiol 318: F329F331, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 127.

    Veiras LC, Girardi ACC, Curry J, Pei L, Ralph DL, Tran A, et al..: Sexual dimorphic pattern of renal transporters and electrolyte homeostasis. J Am Soc Nephrol 28: 35043517, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 128.

    Hu R, McDonough AA, Layton AT: Functional implications of the sex differences in transporter abundance along the rat nephron: modeling and analysis. Am J Physiol Renal Physiol 317: F1462F1474, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 129.

    Li Q, McDonough AA, Layton HE, Layton AT: Functional implications of sexual dimorphism of transporter patterns along the rat proximal tubule: modeling and analysis. Am J Physiol Renal Physiol 315: F692F700, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 130.

    Edwards A, McDonough AA: Impact of angiotensin II-mediated stimulation of sodium transporters in the nephron assessed by computational modeling. Am J Physiol Renal Physiol 317: F1656F1668, 2019 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 131.

    Sabolic I, Vrhovac I, Eror DB, Gerasimova M, Rose M, Breljak D, et al..: Expression of Na+-D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am J Physiol Cell Physiol 302: C1174C1188, 2012 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 132.

    Veiras LC, McFarlin BE, Ralph DL, Buncha V, Prescott J, Shirvani BS, et al..: Electrolyte and transporter responses to angiotensin II induced hypertension in female and male rats and mice. Acta Physiol (Oxf) 229: e13448, 2020 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 133.

    He J, Gu D, Chen J, Jaquish CE, Rao DC, Hixson JE, et al..; GenSalt Collaborative Research Group: Gender difference in blood pressure responses to dietary sodium intervention in the GenSalt study. J Hypertens 27: 4854, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 134.

    USDA Agricultural Research Services 2019. Usual Nutrient Intake from Food and Beverages, by Gender and Age, What We Eat in America, NHANES 2013-2016. Available at: www.ars.usda.gov/nea/bhnrc/fsrg. Accessed May 6, 2020.

  • 135.

    Vaidya A, Mulatero P, Baudrand R, Adler GK: The expanding spectrum of primary aldosteronism: implications for diagnosis, pathogenesis, and treatment. Endocr Rev 39: 10571088, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 136.

    Herrmann SM, Textor SC: Current concepts in the treatment of renovascular hypertension. Am J Hypertens 31: 139149, 2018 PubMed

  • 137.

    Coen G, Manni M, Giannoni MF, Bianchini G, Calabria S, Mantella D, et al..: Ischemic nephropathy in an elderly nephrologic and hypertensive population. Am J Nephrol 18: 221227, 1998 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 138.

    Gloviczki ML, Glockner JF, Lerman LO, McKusick MA, Misra S, Grande JP, et al..: Preserved oxygenation despite reduced blood flow in poststenotic kidneys in human atherosclerotic renal artery stenosis. Hypertension 55: 961966, 2010 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 139.

    Greite R, Thorenz A, Chen R, Jang MS, Rong S, Brownstein MJ, et al..: Renal ischemia-reperfusion injury causes hypertension and renal perfusion impairment in the CD1 mice which promotes progressive renal fibrosis. Am J Physiol Renal Physiol 314: F881F892, 2018 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 140.

    Pechman KR, De Miguel C, Lund H, Leonard EC, Basile DP, Mattson DL: Recovery from renal ischemia-reperfusion injury is associated with altered renal hemodynamics, blunted pressure natriuresis, and sodium-sensitive hypertension. Am J Physiol Regul Integr Comp Physiol 297: R1358R1363, 2009 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 141.

    Kelly KJ, Williams WWJ Jr, Colvin RB, Meehan SM, Springer TA, Gutierrez-Ramos JC, et al..: Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97: 10561063, 1996 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 142.

    Kinsey GR, Okusa MD: Role of leukocytes in the pathogenesis of acute kidney injury. Crit Care 16: 214, 2012 PubMed

  • 143.

    Abe C, Inoue T, Inglis MA, Viar KE, Huang L, Ye H, et al..: C1 neurons mediate a stress-induced anti-inflammatory reflex in mice. Nat Neurosci 20: 700707, 2017 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 144.

    Inoue T, Abe C, Sung SS, Moscalu S, Jankowski J, Huang L, et al..: Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes. J Clin Invest 126: 19391952, 2016 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 145.

    Gigliotti JC, Huang L, Bajwa A, Ye H, Mace EH, Hossack JA, et al..: Ultrasound modulates the splenic neuroimmune axis in attenuating AKI. J Am Soc Nephrol 26: 24702481, 2015 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 146.

    Gigliotti JC, Huang L, Ye H, Bajwa A, Chattrabhuti K, Lee S, et al..: Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J Am Soc Nephrol 24: 14511460, 2013 PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 147.

    Neumann HPH, Young WF Jr, Eng C: Pheochromocytoma and paraganglioma. N Engl J Med 381: 552565, 2019 PubMed

  • 148.

    Pappachan JM, Tun NN, Arunagirinathan G, Sodi R, Hanna FWF: Pheochromocytoma and hypertension. Curr Hypertens Rep 20: 3, 2018 PubMed

Metrics

All Time Past Year Past 30 Days
Abstract Views 1736 372 16
Full Text Views 1703 472 38
PDF Downloads 1023 370 38